Biomaterials for MEMS

This book serves as a guide for practicing engineers, researchers, and students interested in MEMS devices that use biomaterials and biomedical applications. It is also suitable for engineers and researchers interested in MEMS and its applications but who do not have the necessary background in biom...

Descripción completa

Detalles Bibliográficos
Otros Autores: Chiao, M. (Mu) (-), Chiao, Jung-Chih
Formato: Libro electrónico
Idioma:Inglés
Publicado: Singapore : Pan Stanford Pub 2011.
Edición:1st edition
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009628918906719
Tabla de Contenidos:
  • Front Cover; Preface; Contents; Chapter OneIntroduction; 1.1 INTRODUCTION; 1.2 MICROMACHINING OF BIOMATERIALS; 1.3 BIOMEDICAL MICRODEVICES; 1.4 ORGANIZATION OF THE BOOK; Chapter TwoSpider Silk as a MEMS Material; 2.1 INTRODUCTION; 2.2 THIN-FILM SPIDER SILK PREPARATION; 2.3 CHARACTERIZATION; 2.3.1 SEM and EDS; 2.3.2 TEM; 2.3.3 FTIR; 2.3.4 Squid; 2.3.5 Micromachining and Mechanical Testing of a Spider Silk Microbridge; 2.3.6 Actuation of a Magnetic Spider Silk Microstructure; 2.4 CONCLUSIONS AND OUTLOOK; 2.5 ACKNOWLEDGMENTS
  • Chapter ThreeBiodegradable Elastomeric Polymers and MEMS in Tissue Engineering3.1 INTRODUCTION; 3.1.1 Tissue Engineering; 3.1.2 Mechanical Considerations for Tissue Engineering Scaffolds; 3.2 DESIGN CRITERIA FOR BIODEGRADABLE ELASTOMERIC POLYMERS; 3.2.1 Polymerization Mechanisms; 3.2.2 Methods to Incorporate Elasticity; 3.2.3 Design Concerns; 3.2.3.1 Biocompatibility; 3.2.3.2 Important Mechanical Properties; 3.2.3.3 Degradation Rate; 3.3 BIODEGRADABLE ELASTOMERIC POLYMERS; 3.3.1 Polyesters; 3.3.1.1 Polyhydroxyalkanoates (PHAs); 3.3.1.2 Poly(glycerol-sebacate) (PGS)
  • 3.3.1.3 Poly(glycerol sebacate)acrylate (PGSA)3.3.1.4 Poly(diol-citrate) (POC); 3.3.1.5 Poly(PEG-co-CA) (PEC); 3.3.1.6 Poly((1,2-propanediol-sebacate)-citrate) (PPSC); 3.3.1.7 Poly(1,8-octanediol malate) (POM); 3.3.1.8 Poly(alkylene maleate citrates) (PAMCs)58; 3.3.1.9 Crosslinked Urethane-Doped Polyesters59,60; 3.3.2 Polyurethanes; 3.3.2.1 Polyester-urethanes; 3.3.2.2 PCL-based polyester urethanes; 3.3.2.3 Poly(ester-ether) urethanes; 3.3.3 Polycarbonates; 3.3.3.1 Poly(D,L Lactide-co-1,3-trimethylene carbonate); 3.3.3.2 Poly (ε-caprolactone-co-1,3-trimethylene carbonate)
  • 3.4 MEMS PRINCIPLES IN TISSUE ENGINEERING3.5 MEMS APPLICATIONS IN TISSUE ENGINEERING; 3.6 OUTLOOK; Chapter FourMEMS in the Nervous System; 4.1 IN VITRO DEVICES; 4.1.1 Microelectrode Arrays; 4.1.2 Microperfusion Devices; 4.1.3 Microfluidic Devices; 4.2 IN VIVO DEVICES; 4.2.1 The Utah Electrode Array; 4.2.2 Michigan Probes; 4.2.3 Custom Electrodes and Combination Devices; 4.2.4 Deep Brain Stimulation Electrodes; 4.2.5 Peripheral Prosthetic Devices; 4.2.6 Visual Prosthetics; 4.2.7 Auditory Prosthetics; 4.2.8 Spinal Cord Electrodes; 4.2.9 Brain Computer Interfaces
  • 4.3 DEVICE CONCERNS AND TISSUE RESPONSE4.4 CONCLUDING REMARKS; Chapter FiveHydrogel-Based Microfluidic Cell Culture; 5.1 INTRODUCTION; 5.1.1 Traditional Cell Culture Methods; 5.1.2 Two-dimensional Versus Three-dimensional Culture Methods; 5.1.3 Microscale Cell Culture Using Hydrogels; 5.2 HYDROGELS; 5.2.1 Naturally Derived Hydrogels; 5.2.2 Alginate; 5.2.3 Agarose; 5.2.4 Synthetic Hydrogels; 5.2.5 Pluronic; 5.2.6 N-isopropylacrylamide Polymers (NiPAAm); 5.3 MICROFABRICATION; 5.4 HYDROGEL-BASED MICROFLUIDIC CELL CULTURE; 5.4.1 On-chip Alginate Cell Encapsulation
  • 5.4.2 Microfluidic Agarose Cell Culture