Fractal models in exploration geophysics applications to hydrocarbon reservoirs

Researchers in the field of exploration geophysics have developed new methods for the acquisition, processing and interpretation of gravity and magnetic data, based on detailed investigations of bore wells around the globe. Fractal Models in Exploration Geophysics describes fractal-based models for...

Descripción completa

Detalles Bibliográficos
Autor principal: Dimri, V. P. (-)
Otros Autores: Srivastava, R. P., Vedanti, Nimisha
Formato: Libro electrónico
Idioma:Inglés
Publicado: Oxford : Elsevier 2012.
Edición:1st ed
Colección:Handbook of geophysical exploration. Seismic exploration.
CSIR-NGRI golden jubilee ; v. 3.
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009628818306719
Tabla de Contenidos:
  • Front Cover; Fractal Models in Exploration Geophysics: Applications to Hydrocarbon Reservoirs; Copyright; Dedication; Contents; Foreword; Preface; Acknowledgments; Handbook of Geophysical Exploration; Chapter 1: Introduction of Fractals: Application to Gravity and Magnetic Data; 1.1. Introduction; 1.2. Fractal and Scaling; 1.3. Behavior of Physical Properties; 1.4. Interpretation of Gravity and Magnetic Data; 1.5. Spectral Analysis; 1.5.1. A Case Study; 1.6. Scaling Spectral Analysis; 1.7. Nonstationary Gravity and Magnetic Profiles; 1.8. Field Example: Kuppam-Palani, South India
  • 1.8.1. Magnetic Transect1.8.2. Gravity Transect; 1.8.3. Analysis; 1.9. Characterization of Time Series for Fractal Behavior; 1.10. Simulation of one-dimensional and two-dimensional Fractal Time/Space Series; 1.10.1. Synthesis of 1D fGn Using fGp Algorithms; 1.10.2. Synthesis of 2D fGn Using fGp Algorithms; 1.11. Examples: Synthesis of Fractal Time Series; 1.12. Fractal Dimension and Design of Geophysical Surveys; 1.13. Conclusion; Chapter 2: Structural Modeling Using Fractals; 2.1. Introduction; 2.2. Tessellation; 2.2.1. Affine Companding
  • 2.3. Automated Perturbation of Model: Some Synthetic Examples2.4. Computation of Gravity Response: A Case Study; 2.4.1. Modeling of Field Gravity Data; 2.4.1.1. Profile AA; 2.5. Conclusion; Chapter 3: Fractal Inversion; 3.1. Introduction; 3.2. Seismic Inversion; 3.2.1. Forward Modeling; 3.3. Generation of Fractal-Based Initial Model; 3.3.1. Computation of Hurst Coefficient; 3.4. Very Fast Simulated Annealing; 3.4.1. Examples; 3.5. Stochastic Inversion; 3.5.1. Synthetic Example; 3.5.2. Field Data Example; 3.6. Deterministic Inversion; 3.7. Analysis of Results; 3.8. Conclusion
  • Chapter 4: Seismic Reservoir Monitoring4.1. Introduction; 4.2. Rock Physics Study; 4.2.1. Changes Due to Saturation; 4.2.2. Reservoir Porosity; 4.2.3. Reservoir Fluid Properties; 4.2.4. Reservoir Mineral Matrix; 4.3. Changes Due to Pressure; 4.4. Acquisition of 4D Seismic Data; 4.5. Repeatability; 4.6. Processing of 4D Seismic Data; 4.7. Analysis of 4D Seismic Data; 4.7.1. Time-Shift Analysis; 4.7.2. Amplitude Analysis; 4.8. Poststack Versus Prestack Analysis; 4.9. Fractal-Based 4D Inversion; 4.10. Time-Lapse Amplitude vs Offset (AVO): Distinguish Between Pressure and Saturation Changes
  • 4.11. Conclusion with Limitations and Challenges in Time-Lapse StudyChapter 5: Reservoir Geophysics; 5.1. Introduction; 5.2. Hydrocarbon Reservoir; 5.2.1. Oil Reservoirs; 5.2.2. Gas Reservoirs; 5.3. Reservoir Rock Properties; 5.3.1. Porosity; 5.3.2. Grain Packing; 5.3.3. Porosity of Cubic Packing; 5.3.4. Porosity of Rhombohedral Packing; 5.3.5. Effect of Grain Sorting; 5.3.6. Effect of Grain Shape; 5.3.7. Pore Volume; 5.4. Fractal Porosity; 5.5. Permeability; 5.5.1. Hydraulic Conductivity; 5.5.2. Relative Permeability; 5.5.3. Relative Permeability Curves; 5.5.4. Fractal Permeability
  • 5.5.5. Flow Capacity