Biomedical imaging principles and applications
"This book presents and describes imaging technologies that can be used to study chemical processes and structural interactions in dynamic systems, principally in biomedical systems. The imaging technologies, largely biomedical imaging technologies such as MRT, Fluorescence mapping, raman mappi...
Otros Autores: | |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Hoboken :
John Wiley & Sons
2012.
|
Edición: | 1st edition |
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009628754806719 |
Tabla de Contenidos:
- BIOMEDICAL IMAGING; CONTENTS; Preface; Contributors; 1 Evaluation of Spectroscopic Images; 1.1 Introduction; 1.2 Data Analysis; 1.2.1 Similarity Measures; 1.2.2 Unsupervised Pattern Recognition; 1.2.2.1 Partitional Clustering; 1.2.2.2 Hierarchical Clustering; 1.2.2.3 Density-Based Clustering; 1.2.3 Supervised Pattern Recognition; 1.2.3.1 Probability of Class Membership; 1.3 Applications; 1.3.1 Brain Tumor Diagnosis; 1.3.2 MRS Data Processing; 1.3.2.1 Removing MRS Artifacts; 1.3.2.2 MRS Data Quantitation; 1.3.3 MRI Data Processing; 1.3.3.1 Image Registration; 1.3.4 Combining MRI and MRS Data
- 1.3.4.1 Reference Data Set1.3.5 Probability of Class Memberships; 1.3.6 Class Membership of Individual Voxels; 1.3.7 Classification of Individual Voxels; 1.3.8 Clustering into Segments; 1.3.9 Classification of Segments; 1.3.10 Future Directions; References; 2 Evaluation of Tomographic Data; 2.1 Introduction; 2.2 Image Reconstruction; 2.3 Image Data Representation: Pixel Size and Image Resolution; 2.4 Consequences of Limited Spatial Resolution; 2.5 Tomographic Data Evaluation: Tasks; 2.5.1 Software Tools; 2.5.2 Data Access; 2.5.3 Image Processing; 2.5.3.1 Slice Averaging
- 2.5.3.2 Image Smoothing2.5.3.3 Coregistration and Resampling; 2.5.4 Visualization; 2.5.4.1 Maximum Intensity Projection (MIP); 2.5.4.2 Volume Rendering and Segmentation; 2.5.5 Dynamic Tomographic Data; 2.5.5.1 Parametric Imaging; 2.5.5.2 Compartment Modeling of Tomographic Data; 2.6 Summary; References; 3 X-Ray Imaging; 3.1 Basics; 3.1.1 History; 3.1.2 Basic Physics; 3.2 Instrumentation; 3.2.1 Components; 3.2.1.1 Beam Generation; 3.2.1.2 Reduction of Scattered Radiation; 3.2.1.3 Image Detection; 3.3 Clinical Applications; 3.3.1 Diagnostic Devices; 3.3.1.1 Projection Radiography
- 3.3.1.2 Mammography3.3.1.3 Fluoroscopy; 3.3.1.4 Angiography; 3.3.1.5 Portable Devices; 3.3.2 High Voltage and Image Quality; 3.3.3 Tomography/Tomosynthesis; 3.3.4 Dual Energy Imaging; 3.3.5 Computer Applications; 3.3.6 Interventional Radiology; 3.4 Radiation Exposure to Patients and Employees; References; 4 Computed Tomography; 4.1 Basics; 4.1.1 History; 4.1.2 Basic Physics and Image Reconstruction; 4.2 Instrumentation; 4.2.1 Gantry; 4.2.2 X-ray Tube and Generator; 4.2.3 MDCT Detector Design and Slice Collimation; 4.2.4 Data Rates and Data Transmission; 4.2.5 Dual Source CT
- 4.3 Measurement Techniques4.3.1 MDCT Sequential (Axial) Scanning; 4.3.2 MDCT Spiral (Helical) Scanning; 4.3.2.1 Pitch; 4.3.2.2 Collimated and Effective Slice Width; 4.3.2.3 Multislice Linear Interpolation and z-Filtering; 4.3.2.4 Three-Dimensional Backprojection and Adaptive Multiple Plane Reconstruction (AMPR); 4.3.2.5 Double z-Sampling; 4.3.3 ECG-Triggered and ECG-Gated Cardiovascular CT; 4.3.3.1 Principles of ECG-Triggering and ECG-Gating; 4.3.3.2 ECG-Gated Single-Segment and Multisegment Reconstruction; 4.4 Applications; 4.4.1 Clinical Applications of Computed Tomography
- 4.4.2 Radiation Dose in Typical Clinical Applications and Methods for Dose Reduction