Data classification algorithms and applications

This book homes in on three primary aspects of data classification: the core methods for data classification including probabilistic classification, decision trees, rule-based methods, and SVM methods; different problem domains and scenarios such as multimedia data, text data, biological data, categ...

Descripción completa

Detalles Bibliográficos
Otros Autores: Aggarwal, Charu C., editor (editor)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Boca Raton : CRC Press [2015]
Edición:1st edition
Colección:Chapman & Hall/CRC data mining and knowledge discovery series ; Volume 35.
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009628733106719
Tabla de Contenidos:
  • Front Cover; Dedication; Contents; Editor Biography; Contributors; Preface; Chapter 1: An Introduction to Data Classification; Chapter 2: Feature Selection for Classification: A Review; Chapter 3: Probabilistic Models for Classification; Chapter 4: Decision Trees: Theory and Algorithms; Chapter 5: Rule-Based Classification; Chapter 6: Instance-Based Learning: A Survey; Chapter 7: Support Vector Machines; Chapter 8: Neural Networks: A Review; Chapter 9: A Survey of Stream Classification Algorithms; Chapter 10: Big Data Classification; Chapter 11: Text Classification
  • Chapter 12: Multimedia ClassificationChapter 13: Time Series Data Classification; Chapter 14: Discrete Sequence Classification; Chapter 15: Collective Classification of Network Data; Chapter 16: Uncertain Data Classification; Chapter 17: Rare Class Learning; Chapter 18: Distance Metric Learning for Data Classification; Chapter 19: Ensemble Learning; Chapter 20: Semi-Supervised Learning; Chapter 21: Transfer Learning; Chapter 22: Active Learning: A Survey; Chapter 23: Visual Classification; Chapter 24: Evaluation of Classification Methods
  • Chapter 25: Educational and Software Resources for Data ClassificationColor Insert