Marine structural design calculations
The perfect guide for veteran structural engineers or for engineers just entering the field of offshore design and construction, Marine Structural Design Calculations offers structural and geotechnical engineers a multitude of worked-out marine structural construction and design calculations. Each c...
Otros Autores: | |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Oxfordshire, [England] :
Butterworth-Heinemann
2015.
|
Edición: | 1st edition |
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009628680406719 |
Tabla de Contenidos:
- Front Cover
- Marine Structural Design Calculations
- Copyright Page
- Dedication
- Contents
- About the Author
- Preface
- 1 Introduction to Offshore Structures
- 1.1 Introduction
- 1.2 History of offshore structures
- 1.3 Overview of field development
- 1.4 Types of offshore platforms
- 1.4.1 Drilling/well protected platforms
- 1.4.2 Tender platforms
- 1.4.3 Self-contained platforms
- 1.4.4 Production platforms
- 1.4.5 Quarters platforms
- 1.4.6 Flare jackets and flare towers
- 1.4.7 Auxiliary platforms
- 1.4.8 Bridges
- 1.4.9 Helidecks
- 1.5 Types of offshore structures
- Further reading
- 2 Engineering Management for Marine Structures
- 2.1 Overview of field development
- 2.1.1 Project cost and the life cycle
- 2.1.2 Concept and screening selection
- 2.2 FEED engineering phase
- 2.3 Detail engineering phase
- 2.4 Engineering design management
- 2.4.1 Engineering stage time and cost control
- 2.4.1.1 Time schedule control
- 2.4.1.2 Engineering cost control
- 2.4.2 Engineering interfaces
- 2.4.3 Structural engineering quality control
- Further reading
- 3 Offshore Structures' Loads and Strength
- 3.1 Introduction
- 3.2 Gravity load
- 3.2.1 Dead load
- 3.2.2 Live load
- 3.2.3 Impact load
- 3.2.4 Design for serviceability limit state
- 3.2.5 Crane support structures
- 3.3 Wind load
- 3.3.1.1.1 Example 3.1
- Gravity loads
- 3.3.1.1.2 Wind loads
- 3.4 Offshore loads
- 3.4.1 Wave load
- 3.4.1.1 Drag force
- 3.4.1.2 Inertia force
- 3.4.1.3 Wave load calculation
- 3.4.1.4 Comparison between wind and wave calculation
- 3.4.1.4.1 Example 3.2
- 3.4.1.4.2 Example 3.3
- 3.4.1.5 Conductor shielding factor
- 3.4.1.5.1 Example 3.4
- Solution
- 3.4.2 Current load
- 3.4.2.1 Design current profiles
- 3.5 Earthquake load
- 3.5.1 Extreme level earthquake requirements.
- 3.5.2 Abnormal level earthquake requirements
- 3.5.3 ALE structural and foundation modeling
- 3.5.3.1 Topside appurtenances and equipment
- 3.6 Ice loads
- 3.7 Other loads
- 3.7.1 Marine growth
- 3.7.2 Scour
- 3.8 Design for ultimate limit state
- 3.8.1 Load factors
- 3.8.1.1 In-place analysis by ISO19902
- 3.8.1.2 Extreme environmental situation for fixed offshore platforms
- 3.8.1.2.1 Example 3.6
- 3.8.1.2.2 Example 3.7
- 3.8.1.3 Operating environmental situations for fixed platforms
- 3.8.2 Partial action factors
- 3.9 Collision events
- 3.10 Material strength
- 3.11 Cement grout
- Further reading
- 4 Offshore structures design
- 4.1 Introduction
- 4.2 Guide for preliminary design
- 4.2.1 Approximate dimensions
- 4.2.2 Bracing system
- 4.2.3 Jacket design
- 4.3 Structure analysis
- 4.3.1 Global structure analysis
- 4.3.2 The loads on the piles
- Example 4.1
- Solution
- 4.3.3 Modeling techniques
- 4.3.3.1 Joint coordinates
- 4.3.3.2 Local member axes
- 4.3.3.3 Member effective lengths
- 4.3.3.4 Joint eccentricities
- 4.4 Dynamic structure analysis
- 4.4.1 Natural frequency
- Example 4.2
- 4.5 Cylinder member strength
- 4.5.1 Cylinder member strength calculation by ISO19902
- 4.5.1.1 Axial tension
- 4.5.1.2 Axial compression
- 4.5.1.3 Column buckling
- 4.5.1.4 Local buckling
- 4.5.1.5 Bending
- 4.5.1.6 Shear
- 4.5.1.7 Torsional shear
- 4.5.1.8 Hydrostatic pressure
- 4.5.1.9 Hoop buckling
- 4.5.1.10 Tubular members subjected to combined forces without hydrostatic pressure
- 4.5.1.10.1 Axial tension and bending
- 4.5.1.10.2 Axial compression and bending
- 4.5.1.11 Tubular members subjected to combined forces with hydrostatic pressure
- 4.5.1.11.1 Axial tension, bending, and hydrostatic pressure
- 4.5.1.11.2 Axial compression, bending, and hydrostatic pressure.
- 4.5.1.12 Effective lengths and moment reduction factors
- 4.5.2 Cylinder member strength calculation by API RP2A
- 4.5.2.1 Axial tension
- 4.5.2.2 Axial compression
- 4.5.2.3 Local buckling
- 4.5.2.4 Bending
- 4.5.2.5 Shear
- 4.5.2.6 Torsional shear
- 4.5.2.7 Pressure (stiffened and unstiffened cylinders)
- 4.5.2.8 Design hydrostatic head
- 4.5.2.9 Hoop buckling stress
- 4.5.2.10 Combined stresses for cylindrical members
- 4.5.2.10.1 Combined axial compression and bending
- 4.5.2.10.2 Member slenderness
- 4.5.2.11 Combined axial tension and bending
- 4.5.2.12 Axial tension and hydrostatic pressure
- 4.5.2.13 Axial compression and hydrostatic pressure
- 4.5.2.14 Safety factors
- Example 4.3
- Calculation Results
- Example 4.4
- Calculations
- Example 4.5
- Hydrostatic data
- Section properties
- Hydrostatic properties
- Acting stress
- Allowable stress
- Code check
- Ring design
- 4.6 Tubular joint design
- 4.6.1 Simple joint calculation from API RP2A (2007)
- 4.6.1.1 Joint classification and detailing
- 4.6.1.2 Simple tubular joint calculation
- 4.6.1.2.1 Strength factor Qu
- 4.6.1.2.2 Chord load factor Qf
- 4.6.1.2.3 Joints with thickened cans
- 4.6.1.2.4 Strength check
- 4.6.1.2.5 Overlapping joints
- 4.6.1.2.6 Grouted joints
- 4.6.2 Joint calculation from API RP2A (2000)
- 4.6.2.1 Punching shear
- 4.6.2.2 Allowable joint capacity
- Example 4.6
- 4.6.2.3 Tubularjoint punching failure
- 4.7 Fatigue analysis
- 4.7.1 Stress concentration factors
- 4.7.1.1 SCFs in grouted joints
- 4.7.1.2 SCFs in cast nodes
- 4.7.2 S-N curves for all members and connections, except tubular connections
- 4.7.3 S-N curves for tubular connections
- 4.7.3.1 Thickness effect
- 4.7.3.1.1 Axial load, chord ends fixed
- 4.7.3.1.2 Axial load, general fixity conditions
- 4.7.3.1.3 In-plane bending.
- 4.7.3.1.4 Out-of-plane bending
- 4.7.3.1.5 Axial load, balanced
- 4.7.3.1.6 In-plane bending
- 4.7.3.1.7 Out-of-plane bending, balanced
- 4.7.3.1.8 Balanced axial load
- 4.7.3.1.9 Unbalanced in-plane bending
- 4.7.3.1.10 Unbalanced out-of plane bending OPB
- 4.7.3.1.11 Balanced axial load for three braces
- 4.7.3.1.12 In-plane bending for three braces
- 4.7.3.1.13 Unbalanced out-of-plane bending for three braces
- 4.7.3.2 Effect of weld toe position
- Example 4.7
- Example 4.8
- Example 4.9
- Example 4.10
- 4.7.4 Jacket fatigue design
- 4.8 Topside design
- 4.8.1 Topside structure analysis
- 4.8.2 Deck design to support vibrating machines
- Example 4.11
- Solution
- 4.8.3 Grating design
- Example 4.12
- Solution
- 4.8.4 Handrails, walkways, stairways, and ladders
- 4.9 Bridges
- 4.10 Vortex-induced vibration
- Example 4.13
- Example 4.14
- Example 4.15
- Example 4.16
- Solution
- Example 4.17
- Solution
- Further reading
- 5 Helidecks and boat landing design
- 5.1 Introduction
- 5.2 Helideck design
- 5.2.1 Helicopter landing loads
- 5.2.1.1 Loads for helicopter landings
- 5.2.1.2 Loads for helicopters at rest
- 5.2.1.3 Helicopter static loads
- 5.2.1.4 Area load
- 5.2.1.5 Helicopter tie-down loads
- 5.2.1.6 Wind loading
- 5.2.1.7 Installation motion
- 5.2.2 Safety net arms and framing
- 5.3 Design load conditions
- 5.3.1 Helideck layout design steps
- 5.3.2 Plate thickness calculation
- Example 5.2
- 5.3.3 Aluminum helideck
- 5.4 Boat landing design
- 5.4.1 Boat landing calculation
- Example 5.3
- 5.4.1.1 Cases of impact load
- 5.4.2 Boat landing design using a nonlinear analysis method
- 5.4.3 Boat impact methods
- 5.4.4 Tubular member denting analysis
- 5.4.4.1 Simplified method for denting limit calculation
- 5.5 Riser guard
- 5.5.1 Riser guard design calculation
- Example 5.4.
- 5.5.1.1 Cases of impact load
- Further reading
- 6 Geotechnical data and piles design
- 6.1 Introduction
- 6.2 Geotechnical investigation
- 6.2.1 Performing an offshore investigation
- 6.3 Soil tests
- 6.4 In-situ testing
- 6.4.1 Cone penetration test
- 6.4.1.1 Equipment requirements
- 6.4.1.2 CPT results
- 6.4.2 Field vane test
- 6.5 Soil properties
- 6.5.1 Strength
- 6.5.2 Soil characterization
- 6.6 Pile foundations
- 6.6.1 Pile capacity for axial loads
- 6.6.1.1 Skin friction and end bearing in cohesive soils
- Example 6.1
- Solution
- Example 6.2
- Solution
- Example 6.3
- Solution
- 6.6.1.2 Shaft friction and end bearing in cohesionless soils
- 6.6.2 Foundation size
- 6.6.2.1 Pile penetration
- 6.6.3 Axial pile performance
- 6.6.3.1 Static load-deflection behavior
- 6.6.3.2 Cyclic response
- 6.6.3.3 Axial load-deflection (t-z and Q-z) data
- 6.6.3.4 Axial pile capacity
- 6.6.3.5 Laterally loaded piles reaction
- 6.6.3.6 Lateral bearing capacity for soft clay
- 6.6.3.7 Lateral bearing capacity for stiff clay
- 6.6.3.8 Lateral bearing capacity for sand
- 6.6.3.9 Changes in axial capacity in clay with time
- 6.6.4 Pile capacity calculation methods
- 6.6.4.1 Application of CPT
- 6.7 Pile wall thickness
- 6.7.1 Design pile stresses
- 6.7.2 Stresses due to the weight of the hammer during hammer placement
- 6.7.3 Minimum wall thickness
- 6.7.4 Driving shoe and head
- 6.7.5 Pile section lengths
- 6.8 Pile drivability analysis
- 6.8.1 Evaluation of soil resistance drive
- 6.8.2 Unit shaft resistance and unit end bearing for uncemented materials
- 6.8.3 Upper- and lower-bound SRD
- Example 6.4
- Solution
- 6.8.4 Results of wave equation analysis
- 6.8.5 Results of drivability calculations
- 6.8.6 Recommendations for pile installation
- 6.9 Soil investigation report
- Example 6.5
- Solution.
- Example 6.6.