Fundamentals of renewable energy processes
With energy sustainability and security at the forefront of public discourse worldwide, there is a pressing need to foster an understanding of clean, safe alternative energy sources such as solar and wind power. Aldo da Rosa's highly respected and comprehensive resource fulfills this need; it h...
Autor principal: | |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Amsterdam ; Boston :
Elsevier / AP
2012.
|
Edición: | 3rd ed |
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009628611706719 |
Tabla de Contenidos:
- FrontCover; Fundamentals of RenewableEnergy Processes; Copyright Page; Table of Content; Foreword to the Third Edition; Foreword to the Second Edition; Foreword to the First Edition; Acknowledgements; Generalites; 1.1 Units and Constants; 1.2 Energy and Utility; 1.3 Conservation of Energy; 1.4 Planetary Energy Balance; 1.5 The Energy Utilization Rate; 1.6 The Population Explosion; 1.7 The Market Penetration Function; 1.8 Planetary Energy Resources; 1.8.1 Mineral Assets; 1.9 Energy Utilization; 1.10 The Efficiency Question; 1.11 The Ecology Question; 1.11.1 Biological; 1.11.2 Mineral
- 1.11.3 Subterranean1.11.4 Oceanic; 1.12 Financing; 1.13 The Cost of Electricity; References; Part I -Heat Engines; A Minimum of Thermodynamics and of the Kinetic Theory of Gases; 2.1 The Motion of Molecules; 2.1.1 Temperature; 2.1.2 The Perfect-Gas Law; 2.1.3 Internal Energy; 2.1.4 Specific Heat at Constant Volume; 2.1.5 The First Law of Thermodynamics; 2.1.6 The Pressure-Volume Work; 2.1.7 Specific Heat at Constant Pressure; 2.1.8 Degrees of Freedom; 2.2 Manipulating Confined Gases (Closed Systems); 2.2.1 Adiabatic Processes; 2.2.1.1 Abrupt Compression; 2.2.1.2 Gradual Compression
- 2.2.1.3 p-V Diagrams2.2.1.4 Polytropic Law; 2.2.1.5 Work Done Under Adiabatic Expansion (Close System); 2.2.2 Isothermal Processes; 2.2.2.1 Functions of State; 2.3 Manipulating Flowing Gases (Open Systems); 2.3.1 Enthalpy; 2.3.2 Turbines; 2.3.2.1 Isentropic Processes; 2.4 Entropy and Lossy Systems; 2.4.1 Changes in Entropy; 2.4.2 Reversibility; 2.4.3 Causes of Irreversibility; 2.4.3.1 Friction; 2.4.3.2 Heat Transfer Across Temperature Differences (Heat Transfer by Conduction); 2.4.3.3 Unrestrained Compression, Expansion of a Gas; 2.4.4 Negentropy; 2.5 Distribution Functions
- 2.5.1 How to Plot Statistics2.5.2 Maxwellian Distribution; 2.5.3 Fermi-Dirac Distribution; 2.6 Boltzmann's Law; 2.7 Phases of a Pure Substance; 2.8 Symbology; References; Mechanical Heat Engines; 3.1 Heats of Combustion; 3.2 Carnot Efficiency; 3.3 Engine Types; 3.4 The Otto Engine; 3.4.1 The Efficiency of an Otto Engine; 3.4.2 Using the T-s Diagram; 3.4.3 Improving the Efficiency of the Otto Engine; 3.5 Gasoline; 3.5.1 Heat of Combustion; 3.5.2 Antiknock Characteristics; 3.6 Knocking; 3.7 Rankine Cycle; 3.7.1 The Boiling of Water; 3.7.2 The Steam Engine; 3.7.3 And now?; 3.8 The Brayton Cycle
- 3.9 Combined Cycles3.10 Hybrid Engines for Automobiles; 3.11 The Stirling Engine; 3.11.1 The Kinematic Stirling Engine; 3.11.1.1 The Alpha Stirling Engine; 3.11.1.2 The Beta Stirling Engine; 3.11.1.3 The Implementation of the Kinematic Stirling; 3.11.2 The Free-piston Stirling Engine; References; Ocean Thermal Energy Converters; 4.1 Introduction; 4.2 OTEC Configurations; 4.3 OTEC Efficiency; 4.4 OTEC Design; 4.5 Heat Exchangers; 4.6 Siting; References; Thermoelectricity; 5.1 Experimental Observations; 5.2 Thermoelectric Thermometers; 5.3 The Thermoelectric Generator
- 5.4 Figure of Merit of a Material