Applied Data Mining for Forecasting Using SAS
Applied Data Mining for Forecasting Using SAS, by Tim Rey, Arthur Kordon, and Chip Wells, introduces and describes approaches for mining large time series data sets. Written for forecasting practitioners, engineers, statisticians, and economists, the book details how to select useful candidate input...
Autor Corporativo: | |
---|---|
Otros Autores: | , , |
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
[Place of publication not identified]
SAS Institute
2012
|
Edición: | 1st edition |
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009628582706719 |
Tabla de Contenidos:
- Why industry needs data mining for forecasting
- Data mining for forecasting work process
- Data mining for forecasting infrastructure
- Issues with data mining for forecasting application
- Data collection
- Data preparation
- A practitioner's guide to DMM methods for forecasting
- Model building : ARMA models
- Model building : ARIMAX or dynamic regression modes
- Model building : further modeling topics
- Model building : alternative modeling approaches
- An example of data mining for forecasting.