Statistical and machine learning approaches for network analysis

"This book explores novel graph classes and presents novel methods to classify networks. It particularly addresses the following problems: exploration of novel graph classes and their relationships among each other; existing and classical methods to analyze networks; novel graph similarity and...

Descripción completa

Detalles Bibliográficos
Autor principal: Dehmer, Matthias, 1968- (-)
Otros Autores: Basak, Subhash C., 1945-
Formato: Libro electrónico
Idioma:Inglés
Publicado: Hoboken, N.J. : Wiley 2012.
Edición:1st edition
Colección:Wiley Series in Computational Statistics
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009628538506719
Tabla de Contenidos:
  • Statistical and Machine Learning Approaches for Network Analysis; Contents; Preface; Contributors; 1 A Survey of Computational Approaches to Reconstruct and Partition Biological Networks; 1.1 INTRODUCTION; 1.2 BIOLOGICAL NETWORKS; 1.2.1 Directed Networks; 1.2.2 Undirected Networks; 1.3 GENOME-WIDE MEASUREMENTS; 1.3.1 Gene Expression Data; 1.3.2 Gene Sets; 1.4 RECONSTRUCTION OF BIOLOGICAL NETWORKS; 1.4.1 Reconstruction of Directed Networks; 1.4.1.1 Boolean Networks; 1.4.1.2 Probabilistic Boolean Networks; 1.4.1.3 Bayesian Networks; 1.4.1.4 Collaborative Graph Model; 1.4.1.5 Frequency Method
  • 1.4.1.6 EM-Based Inference from Gene Sets1.4.2 Reconstruction of Undirected Networks; 1.4.2.1 Relevance Networks; 1.4.2.2 Graphical Gaussian Models; 1.5 PARTITIONING BIOLOGICAL NETWORKS; 1.5.1 Directed and Undirected Networks; 1.5.2 Partitioning Undirected Networks; 1.5.2.1 Kernighan-Lin Algorithm; 1.5.2.2 Girvan-Newman Algorithm; 1.5.2.3 Newman's Eigenvector Method; 1.5.2.4 Infomap; 1.5.2.5 Clique Percolation Method; 1.5.3 Partitioning Directed Networks; 1.5.3.1 Newman's Eigenvector Method; 1.5.3.2 Infomap; 1.5.3.3 Clique Percolation Method; 1.6 DISCUSSION; REFERENCES
  • 2 Introduction to Complex Networks: Measures, Statistical Properties, and Models2.1 INTRODUCTION; 2.2 REPRESENTATION OF NETWORKS; 2.3 CLASSICAL NETWORK; 2.3.1 Random Network; 2.3.2 Lattice Network; 2.4 SCALE-FREE NETWORK; 2.4.1 Degree Distribution; 2.4.2 Degree Distribution of Random Network; 2.4.3 Power-Law Distribution in Real-World Networks; 2.4.4 Barab ́asi-Albert Model; 2.4.5 Configuration Model; 2.5 SMALL-WORLD NETWORK; 2.5.1 Average Shortest Path Length; 2.5.2 Ultrasmall-World Network; 2.6 CLUSTERED NETWORK; 2.6.1 Clustering Coefficient; 2.6.2 Watts-Strogatz Model
  • 2.7 HIERARCHICAL MODULARITY2.7.1 Hierarchical Model; 2.7.2 Dorogovtsev-Mendes-Samukhin Model; 2.8 NETWORK MOTIF; 2.9 ASSORTATIVITY; 2.9.1 Assortative Coefficient; 2.9.2 Degree Correlation; 2.9.3 Linear Preferential Attachment Model; 2.9.4 Edge Rewiring Method; 2.10 RECIPROCITY; 2.11 WEIGHTED NETWORKS; 2.11.1 Strength; 2.11.2 Weighted Clustering Coefficient; 2.11.3 Weighted Degree Correlation; 2.12 NETWORK COMPLEXITY; 2.13 CENTRALITY; 2.13.1 Definition; 2.13.2 Comparison of Centrality Measures; 2.14 CONCLUSION; REFERENCES; 3 Modeling for Evolving Biological Networks; 3.1 INTRODUCTION
  • 3.2 UNIFIED EVOLVING NETWORK MODEL: REPRODUCTION OF HETEROGENEOUS CONNECTIVITY, HIERARCHICAL MODULARITY, AND DISASSORTATIVITY3.2.1 Network Model; 3.2.2 Degree Distribution; 3.2.3 Degree-Dependent Clustering Coefficient; 3.2.4 Average Clustering Coefficient; 3.2.5 Degree Correlation; 3.2.6 Assortative Coefficient; 3.2.7 Comparison with Real Data; 3.3 MODELING WITHOUT PARAMETER TUNING: A CASE STUDY OF METABOLIC NETWORKS; 3.3.1 Network Model; 3.3.2 Analytical Solution; 3.3.3 Estimation of the Parameters; 3.3.4 Comparison with Real Data
  • 3.4 BIPARTITE RELATIONSHIP: A CASE STUDY OF METABOLITE DISTRIBUTION