LTE-advanced 3GPP solution for IMT-advanced

From the editors of the highly successful LTE for UMTS: Evolution to LTE-Advanced, this new book examines the main technical enhancements brought by LTE-Advanced, thoroughly covering 3GPP Release 10 specifications and the main items in Release 11. Using illustrations, graphs and real-life scenarios,...

Descripción completa

Detalles Bibliográficos
Otros Autores: Holma, Harri, 1970- (-), Toskala, Antti
Formato: Libro electrónico
Idioma:Inglés
Publicado: Chichester, West Sussex, U.K. ; Wiley 2012.
Edición:1st edition
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009628504106719
Tabla de Contenidos:
  • -- List of Contributors xiii
  • Preface xv
  • Acknowledgements xvii
  • List of Abbreviations xix
  • 1 Introduction 1 /Harri Holma and Antti Toskala
  • 1.1 Introduction 1
  • 1.2 Radio Technology Convergence Towards LTE 1
  • 1.3 LTE Capabilities 3
  • 1.4 Underlying Technology Evolution 4
  • 1.5 Traffic Growth 4
  • 1.6 LTE-Advanced Schedule 6
  • 1.7 LTE-Advanced Overview 6
  • 1.8 Summary 7
  • 2 LTE-Advanced Standardization 8 /Antti Toskala
  • 2.1 Introduction 8
  • 2.2 LTE-Advanced and IMT-Advanced 8
  • 2.3 LTE-Advanced Requirements 9
  • 2.4 LTE-Advanced Study and Specification Phases 10
  • 2.5 Further LTE-Advanced 3GPP Releases 11
  • 2.6 LTE-Advanced Specifications 11
  • 2.7 Conclusions 12
  • References 12
  • 3 LTE Release 8 and 9 Overview 14 /Antti Toskala
  • 3.1 Introduction 14
  • 3.2 Physical Layer 14
  • 3.3 Architecture 22
  • 3.4 Protocols 23
  • 3.5 EPC and IMS 26
  • 3.6 UE Capability and Differences in Release 8 and 9 27
  • 3.7 Conclusions 28
  • References 29
  • 4 Downlink Carrier Aggregation 30 /Mieszko Chmiel and Antti Toskala
  • 4.1 Introduction 30
  • 4.2 Carrier Aggregation Principle 30
  • 4.3 Protocol Impact from Carrier Aggregation 33
  • 4.4 Physical Layer Impact from Carrier Aggregation 38
  • 4.5 Performance 42
  • 4.6 Band Combinations for Carrier Aggregation 46
  • 4.7 Conclusions 48
  • Reference 49
  • 5 Uplink Carrier Aggregation 50 /Jari Lindholm, Claudio Rosa, Hua Wang and Antti Toskala
  • 5.1 Introduction 50
  • 5.2 Uplink Carrier Aggregation Principle 50
  • 5.3 Protocol Impacts from Uplink Carrier Aggregation 51
  • 5.4 Physical Layer Impact from Uplink Carrier Aggregation 52
  • 5.5 Performance 56
  • 5.6 Band Combinations for Carrier Aggregation 61
  • 5.7 Conclusions 62
  • References 62
  • 6 Downlink MIMO 63 /Timo Lunttila, Peter Skov and Antti Toskala
  • 6.1 Introduction 63
  • 6.2 Downlink MIMO Enhancements Overview 63
  • 6.3 Protocol Impact from Downlink MIMO Enhancements 64
  • 6.4 Physical Layer Impact from Downlink MIMO 65
  • 6.5 Performance 70
  • 6.6 Conclusions 73.
  • References 74
  • 7 Uplink MIMO 75 /Timo Lunttila, Kari Hooli, YuYu Yan and Antti Toskala
  • 7.1 Introduction 75
  • 7.2 Uplink MIMO Enhancements Overview 75
  • 7.3 Protocol Impacts from Uplink MIMO 76
  • 7.4 Physical Layer Impacts from Uplink MIMO 77
  • 7.4.1 Uplink Reference Signal Structure 77
  • 7.4.2 MIMO Transmission for Uplink Data 79
  • 7.4.3 MIMO Transmission for Uplink Control Signalling 82
  • 7.4.4 Multi-User MIMO Transmission in the Uplink 82
  • 7.5 Performance 83
  • 7.6 Conclusions 84
  • References 85
  • 8 Heterogeneous Networks 86 /Harri Holma, Patrick Marsch and Klaus Pedersen
  • 8.1 Introduction 86
  • 8.2 Base Station Classes 87
  • 8.3 Traffic Steering and Mobility Management 89
  • 8.3.1 Traffic Steering and Mobility Management in Idle State 90
  • 8.3.2 Traffic Steering and Mobility Management in the Connected State 91
  • 8.3.3 Traffic Steering and Mobility Management with Femto Cells 91
  • 8.3.4 WiFi Offloading 92
  • 8.4 Interference Management 94
  • 8.4.1 Static Interference Avoidance through Frequency Reuse Patterns 96
  • 8.4.2 Dynamic Interference Coordination in the Frequency Domain 97
  • 8.4.3 Dynamic Interference Coordination in the Time Domain 98
  • 8.4.4 Dynamic Interference Coordination in the Power Domain 101
  • 8.5 Performance Results 101
  • 8.5.1 Macro and Outdoor Pico Scenarios 102
  • 8.5.2 Macro and Femto Scenarios 105
  • 8.6 Local IP Access (LIPA) 107
  • 8.7 Summary 108
  • References 108
  • 9 Relays 110 /Harri Holma, Bernhard Raaf and Simone Redana
  • 9.1 Introduction 110
  • 9.2 General Overview 111
  • 9.3 Physical Layer 112
  • 9.3.1 Inband and Outband Relays 112
  • 9.3.2 Sub-frames 113
  • 9.3.3 Retransmissions 115
  • 9.3.4 Relays Compared to Repeaters 116
  • 9.3.5 Relays in TD-LTE 118
  • 9.4 Architecture and Protocols 118
  • 9.4.1 Sub-frame Configuration with Relay Nodes 118
  • 9.4.2 Bearer Usage with Relay Nodes 119
  • 9.4.3 Packet Header Structure in the Relay Interface 120
  • 9.4.4 Attach Procedure 121
  • 9.4.5 Handovers 121
  • 9.4.6 Autonomous Neighbour Relations 122.
  • 9.5 Radio Resource Management 124
  • 9.6 Coverage and Capacity 125
  • 9.6.1 Coverage Gain 126
  • 9.6.2 User Throughput Gains 128
  • 9.6.3 Cost Analysis 129
  • 9.7 Relay Enhancements 130
  • 9.8 Summary 132
  • References 132
  • 10 Self-Organizing Networks (SON) 135 /Cinzia Sartori and Harri Holma
  • 10.1 Introduction 135
  • 10.2 SON Roadmap in 3GPP Releases 135
  • 10.3 Self-Optimization 137
  • 10.3.1 Mobility Robustness Optimization 137
  • 10.3.2 Mobility Load Balancing 142
  • 10.3.3 Minimization of Drive Tests 142
  • 10.3.4 MDT Management and Reporting 144
  • 10.3.5 Energy Savings 145
  • 10.3.6 eNodeB Overlay 146
  • 10.3.7 Capacity-Limited Network 147
  • 10.3.8 Capacity and Coverage Optimization 148
  • 10.4 Self-Healing 150
  • 10.4.1 Cell Outage Compensation 150
  • 10.5 SON Features in 3GPP Release 11 151
  • 10.6 Summary 151
  • References 152
  • 11 Performance Evaluation 153 /Harri Holma and Klaus Pedersen
  • 11.1 Introduction 153
  • 11.2 LTE-Advanced Targets 154
  • 11.2.1 ITU Evaluation Environments 155
  • 11.3 LTE-Advanced Performance Evaluation 156
  • 11.3.1 Peak Data Rates 156
  • 11.3.2 UE Categories 157
  • 11.3.3 ITU Efficiency Evaluation 158
  • 11.3.4 3GPP Efficiency Evaluation 160
  • 11.4 Network Capacity and Coverage 163
  • 11.5 Summary 165
  • References 165
  • 12 Release 11 and Outlook Towards Release 12 166 /Timo Lunttila, Rapeepat Ratasuk, Jun Tan, Amitava Ghosh and Antti Toskala
  • 12.1 Introduction 166
  • 12.2 Release 11 LTE-Advanced Content 166
  • 12.3 Advanced LTE UE Receiver 168
  • 12.3.1 Overview of MMSE-MRC and MMSE-IRC Methods 169
  • 12.3.2 Performance of UE Receiver using IRC and its Comparison
  • to MRC Receiver for Various DL Transmit Modes 170
  • 12.4 Machine Type Communications 172
  • 12.5 Carrier Aggregation Enhancements 177
  • 12.6 Enhanced Downlink Control Channel 179
  • 12.7 Release 12 LTE-Advanced Outlook 181
  • 12.8 Conclusions 183
  • References 183
  • 13 Coordinated Multipoint Transmission and Reception 184 /Harri Holma, Kari Hooli, Pasi Kinnunen, Troels Kolding, PatrickMarsch and Xiaoyi Wang.
  • 13.1 Introduction 184
  • 13.2 CoMP Concept 184
  • 13.3 Radio Network Architecture Options 187
  • 13.4 Downlink CoMP Transmission 190
  • 13.4.1 Enablers for Downlink CoMP in 3GPP 191
  • 13.4.2 Signal Processing and RRM for CoMP 192
  • 13.4.3 Other Implementation Aspects 194
  • 13.5 Uplink CoMP Reception 194
  • 13.6 Downlink CoMP Gains 198
  • 13.7 Uplink CoMP Gains 201
  • 13.8 CoMP Field Trials 204
  • 13.9 Summary 205
  • References 205
  • 14 HSPA Evolution 206 /Harri Holma and Karri Ranta-aho
  • 14.1 Introduction 206
  • 14.2 Multicarrier Evolution 206
  • 14.3 Multiantenna Evolution 208
  • 14.4 Multiflow Transmission 211
  • 14.5 Small Packet Efficiency 213
  • 14.6 Voice Evolution 215
  • 14.6.1 Adaptive Multirate Wideband (AMR-WB) Voice Codec 215
  • 14.6.2 Voice Over IP (VoIP) 215
  • 14.6.3 CS Voice Over HSPA (CSoHSPA) 215
  • 14.6.4 Single Radio Voice Call Continuity (SR-VCC) 215
  • 14.7 Advanced Receivers 215
  • 14.7.1 Advanced UE Receivers 215
  • 14.7.2 Advanced NodeB Receivers 216
  • 14.8 Flat Architecture 217
  • 14.9 LTE Interworking 218
  • 14.10 Summary 218
  • References 219
  • Index 221.