Stochastic geometry for image analysis
"This book develops the stochastic geometry framework for image analysis purpose. Two main frameworks are described: marked point process and random closed sets models. We derive the main issues for defining an appropriate model. The algorithms for sampling and optimizing the models as well as...
Otros Autores: | |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
London : Hoboken, N.J. :
ISTE ; Wiley
c2012.
|
Edición: | 1st edition |
Colección: | ISTE
|
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009628497606719 |
Tabla de Contenidos:
- Cover; Title Page; Copyright Page; Table of Contents; Chapter 1.Introduction; Chapter 2.Marked Point Processes for Object Detection; 2.1. Principal definitions; 2.2. Density of a point process; 2.3. Marked point processes; 2.4. Point processes and image analysis; 2.4.1. Bayesian versus non-Bayesian; 2.4.2. A priori versus reference measure; Chapter 3.Random Sets for Texture Analysis; 3.1. Introduction; 3.2. Random sets; 3.2.1. Insufficiency of the spatial law; 3.2.2. Introduction of a topological context; 3.2.3. The theory of random closed sets (RACS); 3.2.4. Some examples
- 3.2.5. Stationarity and isotropy3.3. Some geostatistical aspects; 3.3.1. The ergodicity assumption; 3.3.2. Inference of the DF of a stationary ergodic RACS; 3.3.2.1. Construction of the estimator; 3.3.2.2. On sampling; 3.3.3. Individual analysis of objects; 3.4. Some morphological aspects; 3.4.1. Geometric interpretation; 3.4.1.1. Point; 3.4.1.2. Pair of points; 3.4.1.3. Segment; 3.4.1.4. Ball; 3.4.2. Filtering; 3.4.2.1. Opening and closing; 3.4.2.2. Sequential alternate filtering; 3.5. Appendix: demonstration of Miles' formulae for the Boolean model; Chapter 4.Simulation and Optimization
- 4.1. Discrete simulations: Markov chain Monte Carlo algorithms4.1.1. Irreducibility, recurrence and ergodicity; 4.1.1.1. Definitions; 4.1.1.2. Stationarity; 4.1.1.3. Convergence; 4.1.1.4. Irreducibility; 4.1.1.5. Aperiodicity; 4.1.1.6. Harris recurrence; 4.1.1.7. Ergodicity; 4.1.1.8. Geometric ergodicity; 4.1.1.9. Central limit theorem; 4.1.2. Metropolis-Hastings algorithm; 4.1.3. Dimensional jumps; 4.1.3.1. Mixture of kernels; 4.1.3.2.π-reversibility; 4.1.4. Standard proposition kernels; 4.1.4.1. Simple perturbations; 4.1.4.2. Model switch; 4.1.4.3. Birth and death
- 4.1.5. Specific proposition kernels4.1.5.1. Creating complex transitions fromstandard transitions; 4.1.5.2. Data-driven perturbations; 4.1.5.3. Perturbations directed by thecurrent state; 4.1.5.4. Composition of kernels; 4.2. Continuous simulations; 4.2.1. Diffusion algorithm; 4.2.2. Birth and death algorithm; 4.2.3. Muliple births and deaths algorithm; 4.2.3.1. Convergence of the distributions; 4.2.3.2. Birth and death process; 4.2.4. Discrete approximation; 4.2.4.1. Acceleration of the multiple birthsand deaths algorithm; 4.3. Mixed simulations; 4.3.1. Jump process; 4.3.2. Diffusion process
- 4.3.3. Coordination of jumps and diffusions4.4. Simulated annealing; 4.4.1. Cooling schedule; 4.4.2. Initial temperature T0; 4.4.3. Logarithmic decrease; 4.4.4. Geometric decrease; 4.4.5. Adaptive reduction; 4.4.6. Stopping criterion/final temperature; Chapter 5.Parametric Inference for Marked Point Processes in Image Analysis; 5.1. Introduction; 5.2. First question: what and where are the objects in the image?; 5.3. Second question: what are the parameters of the point process that models the objects observed in the image?; 5.3.1. Complete data; 5.3.1.1. Maximum likelihood
- 5.3.1.2. Maximum pseudolikelihood