Transmission electron microscopy in micro-nanoelectronics

Today, the availability of bright and highly coherent electron sources and sensitive detectors has radically changed the type and quality of the information which can be obtained by transmission electron microscopy (TEM). TEMs are now present in large numbers not only in academia, but also in indust...

Descripción completa

Detalles Bibliográficos
Otros Autores: Claverie, A. (Alain) (-)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Hoboken, N.J. : London : John Wiley &Sons, Inc., ; ISTE 2013.
Edición:1st edition
Colección:Nanoscience and nanotechnology series.
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009628496606719
Tabla de Contenidos:
  • Title Page; Contents; Introduction; Chapter 1. Active Dopant Profiling in the TEM by Off-Axis Electron Holography; 1.1. Introduction; 1.2. The Basics: from electron waves to phase images; 1.2.1. Electron holography for the measurement of electromagnetic fields; 1.2.2. The electron source; 1.2.3. Forming electron holograms using an electron biprism; 1.2.4. Care of the electron biprism; 1.2.5. Recording electron holograms; 1.2.6. Hologram reconstruction; 1.2.7. Phase Jumps; 1.3. Experimental electron holography; 1.3.1. Fringe contrast, sampling and phase sensitivity
  • 1.3.2. Optimizing the beam settings for an electron holography experiment 1.3.3. Optimizing the field of view using free lens control; 1.3.4. Energy filtering for electron holography; 1.3.5. Minimizing diffraction contrast; 1.3.6. Measurement of the specimen thickness; 1.3.7. Specimen preparation; 1.3.8. The electrically inactive thickness; 1.4. Conclusion; 1.5. Bibliography; Chapter 2. Dopant Distribution Quantitative Analysis Using STEM-EELS/EDX Spectroscopy Techniques; 2.1. Introduction; 2.1.1. Dopant analysis challenges in the silicon industry
  • 2.1.2. The different dopant quantification and imaging methods 2.2. STEM-EELS-EDX experimental challenges for quantitative dopant distribution analysis; 2.2.1. Instrumentation present state-of-the-art and future challenges; 2.3. Experimental conditions for STEM spectroscopy impurity detection; 2.3.1. Radiation damages; 2.3.2. Particularities of EELS and EDX spectroscopy techniques; 2.3.3. Equipments used for the STEM-EELS-EDX analyses presented in this chapter; 2.4. STEM EELS-EDX quantification of dopant distribution application examples; 2.4.1. EELS application analysis examples
  • 2.4.2. EDX application analysis examples 2.5. Discussion on the characteristics of STEM-EELS/EDX and data processing; 2.6. Bibliography; Chapter 3. Quantitative Strain Measurement in Advanced Devices: A Comparison Between Convergent Beam Electron Diffraction and Nanobeam Diffraction; 3.1. Introduction; 3.2 Electron diffraction technique in TEM (CBED and NBD); 3.2.1. CBED patterns acquisition and analysis; 3.2.2. NBD patterns acquisition and analysis; 3.3. Experimental details; 3.3.1. Instrumentation and setup; 3.3.2. Samples description; 3.4. Results and discussion
  • 3.4.1. Strain evaluation in a pMOS transistor integrating eSiGe source and drain - a comparison of CBED and NBD techniques 3.4.2. Quantitative strain measurement in advanced devices by NBD; 3.5. Conclusion; 3.6. Bibliography; Chapter 4. Dark-Field Electron Holography for Strain Mapping; 4.1. Introduction; 4.2. Setup for dark-field electron holography; 4.3. Experimental requirements; 4.4. Strained silicon transistors with recessed sources and drains stressors; 4.4.1. Strained silicon p-MOSFET; 4.5. Thin film effect; 4.6. Silicon implanted with hydrogen; 4.7. Strained silicon n-MOSFET
  • 4.8. Understanding strain engineering