Microfluidics modeling mechanics and mathematics
To provide an interdisciplinary readership with the necessary toolkit to work with micro- and nanofluidics, this book provides basic theory, fundamentals of microfabrication, advanced fabrication methods, device characterization methods and detailed examples of applications of nanofluidics devices a...
Otros Autores: | |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Amsterdam, [Netherlands] :
William Andrew
2017.
|
Edición: | First edition |
Colección: | Micro & nano technologies.
|
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009628325806719 |
Tabla de Contenidos:
- Front Cover; Nanofluidics and Microfluidics; Copyright Page; Contents; Preface; About the Authors; Acknowledgments; Nomenclature List; Symbols; Common Abbreviations; 1 Introduction; 1.1 Length scales; 1.2 Scope and layout of the book; 1.3 Future outlook; References; Select Bibliography; 2 Fundamentals for Microscale and Nanoscale Flows; 2.1 Introduction; 2.2 Definition of a fluid; 2.3 Pressure-driven flows; 2.4 Low Reynolds number flows; 2.5 Electrokinetic phenomena; 2.6 The electric double layer; 2.7 Debye length; 2.8 Electrokinetic phenomena: revisited
- 2.9 Coupling species transport and fluid mechanics2.10 Numerical simulations and advanced modeling methods; References; Select bibliography; 3 Interfaces in Microfluidic and Nanofluidic Systems; 3.1 Introduction; 3.2 Introduction to surfaces; 3.3 Surface charge; 3.4 Surface energy; 3.5 Thermodynamics of surfaces; 3.5.1 Formation of surface layers; 3.5.2 Surface modification methods; 3.5.2.1 Physical methods; 3.5.2.2 Chemical methods; 3.6 Surface characterization methods with relevance to microfluidics and nanofluidics; 3.6.1 Indirect methods; 3.6.2 Direct methods
- 3.7 Surface tension-driven flows3.8 Device interfaces; References; Select bibliography; 4 Advanced Fabrication Methods and Techniques; 4.1 Introduction to micro- and nanofabrication; 4.1.1 Patterning-photolithography; 4.1.1.1 Photolithography overview; 4.1.1.1.1 Wafer cleaning and substrate preparation; 4.1.1.1.2 Photoresist application; 4.1.1.1.3 Soft bake; 4.1.1.1.4 Exposure; 4.1.1.1.5 Development, descum, and removal; 4.1.1.2 Photomasks; 4.1.1.3 Photoresists; 4.1.1.3.1 Positive resists; 4.1.1.3.2 Negative resists; 4.1.1.4 Resist application; 4.1.1.5 Alignment and exposure
- 4.1.1.5.1 Contact/proximity lithography4.1.1.5.2 Projection lithography; 4.1.1.5.3 Double-sided alignment; 4.1.2 Additive techniques; 4.1.2.1 Spin coating; 4.1.2.2 Thermal oxidation; 4.1.2.3 Physical vapor deposition; 4.1.2.3.1 Evaporation; 4.1.2.3.2 Sputtering; 4.1.2.4 Chemical vapor deposition; 4.1.2.4.1 Low-pressure CVD; 4.1.2.4.2 Plasma-enhanced CVD; 4.1.2.4.3 Atomic layer deposition; 4.1.2.5 Electrochemical deposition; 4.1.3 Subtractive techniques; 4.1.3.1 Wet etching; 4.1.3.1.1 Isotropic wet etching; 4.1.3.1.2 Anisotropic wet etching; 4.1.3.1.3 Metal-assisted chemical etching
- 4.1.3.2 Dry etching4.1.3.2.1 Ion-beam etching (ion milling); 4.1.3.2.2 Reactive ion etching; 4.1.3.2.3 Deep reactive ion etching; 4.1.3.2.4 Dry etching masks; 4.1.4 Lift-off; 4.1.5 Bonding; 4.1.5.1 Fusion (direct) bonding; 4.1.5.2 Anodic bonding; 4.1.5.3 Eutectic bonding; 4.1.5.4 Adhesive bonding; 4.2 Advanced patterning techniques; 4.2.1 Remarks on nanoscale patterning; 4.2.2 Electron beam lithography; 4.2.3 Focused ion-beam lithography; 4.2.4 Nanoimprint lithography; 4.2.5 Soft lithography; 4.2.5.1 Microcontact printing; 4.2.5.2 Micromolding and replica; 4.2.5.2.1 Replica molding
- 4.2.5.2.2 Micromolding in capillaries