Electromagnetic surface waves a modern perspective

For decades, the surface-plasmon-polariton wave guided by the interface of simple isotropic materials dominated the scene. However, in recent times research on electromagnetic surface waves guided by planar interfaces has expanded into new and exciting areas. In the 1990's research focused on...

Descripción completa

Detalles Bibliográficos
Autor principal: Polo, John A. (-)
Otros Autores: Mackay, Tom G., author (author), Lakhtakia, A. (Akhlesh), 1957- author
Formato: Libro electrónico
Idioma:Inglés
Publicado: London : Elsevier c2013.
Waltham, MA : 2013.
Edición:1st ed
Colección:Elsevier insights.
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009628310906719
Tabla de Contenidos:
  • Half Title; Title Page; Copyright; Dedication; Contents; Preface; List of Acronyms and Principal Symbols; Surface Waves; 1.1 Introduction; 1.2 A Brief History; 1.3 Simple SPP Wave; 1.3.1 Canonical Boundary-Value Problem; 1.3.2 Practical Configurations; 1.3.2.1 Prism-Coupled Configurations; 1.3.2.2 Grating-Coupled Configuration; 1.3.2.3 Waveguide-Coupled Configurations; 1.4 Dielectric Materials; 1.4.1 Solid Crystals; 1.4.2 Particulate Composite Materials; 1.4.3 Nanoengineered Materials; 1.4.3.1 Columnar Thin Films; 1.4.3.2 Sculptured Thin Films; 1.4.3.3 Photonic Crystals
  • 1.4.3.4 Rugate Filters1.4.4 Liquid Crystals; 1.4.5 Reusch Piles; 1.5 Negative-Phase-Velocity Materials; 1.6 Bianisotropic Materials; 1.7 Taxonomy of Electromagnetic Surface Waves; 1.7.1 SPP Waves; 1.7.2 Dyakonov Waves; 1.7.3 Tamm Waves; 1.7.4 Dyakonov-Tamm Waves; 1.7.5 Emerging Types of Surface Waves; 1.8 Applications; 1.8.1 SPP Waves; 1.8.2 Other Surface Waves; 1.8.3 STFs for Optical Sensing; Surface-Plasmon-Polariton Waves I; 2.1 Introduction; 2.2 Canonical Boundary-Value Problem; 2.2.1 Geometry; 2.2.2 Field Representation; 2.2.3 Linear Polarization States; 2.2.4 Boundary Conditions
  • 2.2.5 Amplitude Vectors2.2.6 Time-Averaged Poynting Vector; 2.2.7 Wavenumbers; 2.2.8 Phase Speed and Characteristic Lengths; 2.2.9 Characteristics of Simple SPP Waves; 2.2.10 Fano Wave; 2.2.11 Zenneck Wave; 2.3 Optical Excitation of Simple SPP Waves; 2.3.1 Turbadar-Kretschmann-Raether Configuration; 2.3.1.1 Boundary-Value Problem; 2.3.1.2 p-Polarized Incident Plane Wave; 2.3.1.3 s-Polarized Incident Plane Wave; 2.3.1.4 Illustrative Results; 2.3.1.5 SPR-Based Prism-Coupled Sensing; 2.3.1.6 Fiber-Optic Coupling; 2.3.2 Turbadar-Otto Configuration; 2.3.3 Sarid Configuration
  • 2.3.4 Grating-Coupled Configuration2.3.4.1 Incident Plane Wave; 2.3.4.2 Reflected and Transmitted Field Phasors; 2.3.4.3 Linear Reflectances and Transmittances; 2.3.4.4 Rigorous Coupled-Wave Approach; 2.3.4.5 Stable RCWA Algorithm; 2.3.4.6 Excitation of an SPP Wave; 2.3.4.7 Illustrative Results; 2.3.5 Waveguide-Coupled Configuration; 2.4 Nonlinear Dielectric Materials; General Theory of Surface-Wave Propagation; 3.1 Introduction; 3.2 Bianisotropic Materials; 3.2.1 Maxwell Postulates; 3.2.2 Linear Constitutive Relations; 3.2.3 Periodic Nonhomogeneity; 3.2.4 Homogeneous Bianisotropic Materials
  • 3.3 Propagation in a Homogeneous Bianisotropic Material3.3.1 Matrix Ordinary Differential Equation; 3.3.2 Eigenmodes; 3.4 Propagation in a Periodically NonhomogeneousBianisotropic Material; 3.4.1 Matrix Ordinary Differential Equation; 3.4.2 Eigenmodes; 3.5 Canonical Boundary-Value Problem; 3.5.1 Dispersion Equation; 3.5.2 Computational Matters; 3.6 Modified Canonical Boundary-Value Problem; 3.7 Prism-Coupled Configuration; 3.7.1 Incident, Reflected, and Transmitted Plane Waves; 3.7.2 Solution of Boundary-Value Problem; 3.7.3 Linear Reflectances and Transmittances
  • 3.7.4 Circular Reflectances and Transmittances