Doing Bayesian data analysis a tutorial with R and BUGS

"There is an explosion of interest in Bayesian statistics, primarily because recently created computational methods have finally made Bayesian analysis tractable and accessible to a wide audience. Doing Bayesian Data Analysis, A Tutorial Introduction with R and BUGS, is for first year graduate...

Descripción completa

Detalles Bibliográficos
Otros Autores: Kruschke, John K., author (author)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Burlington, MA : Academic Press [2011]
Edición:1st edition
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009628239706719
Tabla de Contenidos:
  • This book's organization : read me first!
  • Introduction : models we believe in
  • What is this stuff called probability?
  • Bayes' rule
  • Inferring a binomial proportion via exact mathematical analysis
  • Inferring a binomial proportion via grid approximation
  • Inferring a binomial proportion via the Metropolis algorithm
  • Inferring two binomial proportions via Gibbs sampling
  • Bernoulli likelihood with hierarchical prior
  • Hierarchical modeling and model comparison
  • Null hypothesis significance testing
  • Bayesian approaches to testing a point ("null") hypothesis
  • Goals, power, and sample size
  • Overview of the generalized linear model
  • Metric predicted variable on a single group
  • Metric predicted variable with one metric predictor
  • Metric predicted variable with multiple metric predictors
  • Metric predicted variable with one nominal predictor
  • Metric predicted variable with multiple nominal predictors
  • Dichotomous predicted variable
  • Ordinal predicted variable
  • Contingency table analysis
  • Tools in the trunk.