Data mining practical machine learning tools and techniques

Data Mining: Practical Machine Learning Tools and Techniques offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. This highly anticipated third edition of the most acclaimed work o...

Descripción completa

Detalles Bibliográficos
Autor principal: Witten, I. H. (-)
Otros Autores: Frank, Eibe, Hall, Mark A.
Formato: Libro electrónico
Idioma:Inglés
Publicado: Amsterdam : Elsevier/Morgan Kaufmann 2011.
Edición:3rd ed
Colección:The Morgan Kaufmann Series in Data Management Systems
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009628074306719
Tabla de Contenidos:
  • Part I. Machine learning tools and techniques: 1. What's it all about?; 2. Input: concepts, instances, and attributes; 3. Output: knowledge representation; 4. Algorithms: the basic methods; 5. Credibility: evaluating what's been learned
  • Part II. Advanced Data Mining: 6. Implementations: real machine learning schemes; 7. Data transformation; 8. Ensemble learning; 9. Moving on: applications and beyond
  • Part III. The Weka Data MiningWorkbench: 10. Introduction to Weka; 11. The explorer
  • 12. The knowledge flow interface; 13. The experimenter; 14 The command-line interface; 15. Embedded machine learning; 16. Writing new learning schemes; 17. Tutorial exercises for the weka explorer.