Low cost emergency water purification technologies
Natural disasters, tornadoes, hurricanes, and floods are occurring with increasing frequency. In emergencies, pure drinking water is quickly the most important item. Low Cost Emergency Water Purification Technologies provides the tips and techniques for supplying potable drinking water at low cost...
Otros Autores: | , , , , , |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Waltham, Massachusetts ; Oxford, [England] :
Butterworth-Heinemann
2014.
|
Edición: | First edition |
Colección: | Integrated Water Security Series
|
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009628044706719 |
Tabla de Contenidos:
- Front Cover; Low Cost Emergency Water Purification Technologies: Integrated Water Security Series; Copyright; Contents; About the Authors; Preface; Chapter 1: Introduction; 1.1. Standards for Water Quality and Quantity; 1.2. Technology Requirements; 1.3. Challenges in Providing Water Treatment for Disaster Relief; 1.4. Costs; 1.4.1. How Much Should Recipients Pay?; 1.4.2. Relative Costs; Chapter 2: Technologies for Short-Term Applications; 2.1. Introduction; 2.2. High-Energy Systems; 2.2.1. Reverse Osmosis; 2.2.2. Distillation Technology; 2.3. Low-Energy Applications; 2.3.1. Forward Osmosis
- 2.3.2. Emergency Use2.3.3. Commercial Products; 2.3.4. Costs; 2.3.5. Evaluation; Chapter 3: Solar Pasteurization; 3.1. Microbiology of Water Pasteurization; 3.2. Use of Solar Cookers for Drinking Water Production; 3.3. Devices Designed Specifically for Water; 3.4. Simple Devices from Common Materials; 3.5. Commercial Devices in Production; 3.6. Devices with Recovery Heat Exchange; 3.7. Water Pasteurization Indicators; 3.8. Multi-use Systems; 3.9. The Greenhouse Effect; 3.10. Use of SOPAS in Conjunction with SODIS; 3.11. SODIS and Titanium Dioxide; 3.12. SOPAS and SODIS Technology Evaluation
- Chapter 4: Disinfection Systems4.1. UV Light Systems; 4.1.1. Advantages and Disadvantages; 4.1.2. Design Considerations; 4.1.2.1. Maintenance; 4.1.2.2. Cost Per Unit Water Treatment; 4.2. Silver-Impregnated Activated Carbon; 4.2.1. Cost Considerations; 4.3. Electrochlorination Systems; 4.3.1. Byproduct Formation; 4.3.2. Cost Considerations; 4.4. Chlorinators; 4.4.1. Liquid Chlorine as a Disinfectant; 4.4.2. Chlorine Tablets; 4.4.3. Disadvantages of Chlorination; Chapter 5: Technologies for Long-Term Applications; 5.1. Slow Sand Filtration; 5.1.1. Removal Efficiency; 5.1.2. Construction
- 5.2. Packaged Filtration Units5.2.1. Candle Filter; 5.2.1.1. Materials, Manufacturing, and Removal Efficiency; 5.2.1.2. Improve Filter Efficiency; 5.2.1.3. Maintenance; 5.2.1.4. Cost; 5.2.2. Ceramic Disk Filter; 5.2.2.1. Materials, Manufacturing, and Removal Efficiency; 5.2.2.2. Maintenance; 5.2.2.3. Cost; 5.2.3. Ceramic Pot Filters; 5.2.3.1. Materials, Manufacturing, Removal Efficiency; 5.2.3.2. Maintenance; 5.2.3.3. Cost; 5.2.4. Evaluation of Ceramic Water Filters; 5.2.5. Lifestraw Personal; 5.2.5.1. Cost; 5.2.6. Lifestraw Family; 5.2.6.1. Cost; 5.2.7. FilterPen; 5.2.7.1. Cost
- 5.2.8. Chulli (Ovens) Treatment5.3. Pressurized Filter Units; 5.3.1. Multistage Backpack Filter; 5.3.1.1. Operating Removal Efficiency; 5.3.1.2. Cost; 5.3.2. Packaged and Portable RO Filter; 5.3.2.1. Operating Removal Efficiency; 5.3.2.2. Cost; 5.3.3. WaterBox; 5.3.3.1. Cost; 5.3.4. Lifesaver Jerrycan; 5.3.4.1. Cost; 5.4. Small-Scale Systems; 5.4.1. Sunspring; 5.4.1.1. Cost; 5.4.2. Perfector-E; 5.4.2.1. Cost; 5.4.3. SkyHydrant; 5.4.3.1. Cost; 5.4.4. iWater Cycle; 5.4.4.1. Cost; 5.4.5. Evaluation of Small-Scale Systems; 5.5. Natural Filtration; 5.5.1. Design of Wells
- Chapter 6: Emerging Technologies for Emergency Applications