Practical image and video processing using MATLAB
"The book provides a practical introduction to the most important topics in image and video processing using MATLAB (and its Image Processing Toolbox) as a tool to demonstrate the most important techniques and algorithms. The contents are presented in a clear, technically accurate, objective wa...
Otros Autores: | |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Hoboken, New Jersey :
Wiley-IEEE Press
2011.
|
Edición: | 1st edition |
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009628014606719 |
Tabla de Contenidos:
- LIST OF FIGURES xxi
- LIST OF TABLES xxxix
- FOREWORD xli
- PREFACE xliii
- ACKNOWLEDGMENTS xlix
- PART I IMAGE PROCESSING
- 1 INTRODUCTION AND OVERVIEW 3
- 1.1 Motivation / 3
- 1.2 Basic Concepts and Terminology / 5
- 1.3 Examples of Typical Image Processing Operations / 6
- 1.4 Components of a Digital Image Processing System / 10
- 1.5 Machine Vision Systems / 12
- 1.6 Resources / 14
- 1.7 Problems / 18
- 2 IMAGE PROCESSING BASICS 21
- 2.1 Digital Image Representation / 21
- 2.1.1 Binary (1-Bit) Images / 23
- 2.1.2 Gray-Level (8-Bit) Images / 24
- 2.1.3 Color Images / 25
- 2.1.4 Compression / 26
- 2.2 Image File Formats / 27
- 2.3 Basic Terminology / 28
- 2.4 Overview of Image Processing Operations / 30
- 2.4.1 Global (Point) Operations / 31
- 2.4.2 Neighborhood-Oriented Operations / 31
- 2.4.3 Operations Combining Multiple Images / 32
- 2.4.4 Operations in a Transform Domain / 32
- 3 MATLAB BASICS 35
- 3.1 Introduction to MATLAB / 35
- 3.2 Basic Elements of MATLAB / 36
- 3.2.1 Working Environment / 36
- 3.2.2 Data Types / 37
- 3.2.3 Array and Matrix Indexing in MATLAB / 37
- 3.2.4 Standard Arrays / 37
- 3.2.5 Command-Line Operations / 38
- 3.3 Programming Tools: Scripts and Functions / 38
- 3.3.1 M-Files / 39
- 3.3.2 Operators / 40
- 3.3.3 Important Variables and Constants / 42
- 3.3.4 Number Representation / 42
- 3.3.5 Flow Control / 43
- 3.3.6 Code Optimization / 43
- 3.3.7 Input and Output / 43
- 3.4 Graphics and Visualization / 43
- 3.5 Tutorial 3.1: MATLAB-a Guided Tour / 44
- 3.6 Tutorial 3.2: MATLAB Data Structures / 46
- 3.7 Tutorial 3.3: Programming in MATLAB / 53
- 3.8 Problems / 59
- 4 THE IMAGE PROCESSING TOOLBOX AT A GLANCE 61
- 4.1 The Image Processing Toolbox: an Overview / 61
- 4.2 Essential Functions and Features / 62
- 4.2.1 Displaying Information About an Image File / 62
- 4.2.2 Reading an Image File / 64
- 4.2.3 Data Classes and Data Conversions / 65
- 4.2.4 Displaying the Contents of an Image / 68.
- 4.2.5 Exploring the Contents of an Image / 69
- 4.2.6 Writing the Resulting Image onto a File / 70
- 4.3 Tutorial 4.1: MATLAB Image Processing Toolbox-a Guided Tour / 72
- 4.4 Tutorial 4.2: Basic Image Manipulation / 74
- 4.5 Problems / 80
- 5 IMAGE SENSING AND ACQUISITION 83
- 5.1 Introduction / 83
- 5.2 Light, Color, and Electromagnetic Spectrum / 84
- 5.2.1 Light and Electromagnetic Spectrum / 84
- 5.2.2 Types of Images / 85
- 5.2.3 Light and Color Perception / 86
- 5.2.4 Color Encoding and Representation / 87
- 5.3 Image Acquisition / 89
- 5.3.1 Image Sensors / 89
- 5.3.2 Camera Optics / 92
- 5.4 Image Digitization / 93
- 5.4.1 Sampling / 95
- 5.4.2 Quantization / 96
- 5.4.3 Spatial and Gray-Level Resolution / 97
- 5.5 Problems / 101
- 6 ARITHMETIC AND LOGIC OPERATIONS 103
- 6.1 Arithmetic Operations: Fundamentals and Applications / 103
- 6.1.1 Addition / 104
- 6.1.2 Subtraction / 106
- 6.1.3 Multiplication and Division / 109
- 6.1.4 Combining Several Arithmetic Operations / 110
- 6.2 Logic Operations: Fundamentals and Applications / 111
- 6.3 Tutorial 6.1: Arithmetic Operations / 113
- 6.4 Tutorial 6.2: Logic Operations and Region of Interest Processing / 118
- 6.5 Problems / 122
- 7 GEOMETRIC OPERATIONS 125
- 7.1 Introduction / 125
- 7.2 Mapping and Affine Transformations / 127
- 7.3 Interpolation Methods / 130
- 7.3.1 The Need for Interpolation / 130
- 7.3.2 A Simple Approach to Interpolation / 131
- 7.3.3 Zero-Order (Nearest-Neighbor) Interpolation / 132
- 7.3.4 First-Order (Bilinear) Interpolation / 132
- 7.3.5 Higher Order Interpolations / 132
- 7.4 Geometric Operations Using MATLAB / 132
- 7.4.1 Zooming, Shrinking, and Resizing / 133
- 7.4.2 Translation / 134
- 7.4.3 Rotation / 134
- 7.4.4 Cropping / 134
- 7.4.5 Flipping / 134
- 7.5 Other Geometric Operations and Applications / 134
- 7.5.1 Warping / 134
- 7.5.2 Nonlinear Image Transformations / 135
- 7.5.3 Morphing / 137
- 7.5.4 Seam Carving / 137
- 7.5.5 Image Registration / 137.
- 7.6 Tutorial 7.1: Image Cropping, Resizing, Flipping, and Rotation / 138
- 7.7 Tutorial 7.2: Spatial Transformations and Image Registration / 142
- 7.8 Problems / 149
- 8 GRAY-LEVEL TRANSFORMATIONS 151
- 8.1 Introduction / 151
- 8.2 Overview of Gray-level (Point) Transformations / 152
- 8.3 Examples of Point Transformations / 155
- 8.3.1 Contrast Manipulation / 155
- 8.3.2 Negative / 157
- 8.3.3 Power Law (Gamma) Transformations / 157
- 8.3.4 Log Transformations / 159
- 8.3.5 Piecewise Linear Transformations / 160
- 8.4 Specifying the Transformation Function / 161
- 8.5 Tutorial 8.1: Gray-level Transformations / 163
- 8.6 Problems / 169
- 9 HISTOGRAM PROCESSING 171
- 9.1 Image Histogram: Definition and Example / 171
- 9.2 Computing Image Histograms / 173
- 9.3 Interpreting Image Histograms / 174
- 9.4 Histogram Equalization / 176
- 9.5 Direct Histogram Specification / 181
- 9.6 Other Histogram Modification Techniques / 184
- 9.6.1 Histogram Sliding / 185
- 9.6.2 Histogram Stretching / 185
- 9.6.3 Histogram Shrinking / 186
- 9.7 Tutorial 9.1: Image Histograms / 188
- 9.8 Tutorial 9.2: Histogram Equalization and Specification / 191
- 9.9 Tutorial 9.3: Other Histogram Modification Techniques / 195
- 9.10 Problems / 200
- 10 NEIGHBORHOOD PROCESSING 203
- 10.1 Neighborhood Processing / 203
- 10.2 Convolution and Correlation / 204
- 10.2.1 Convolution in the One-Dimensional Domain / 204
- 10.2.2 Convolution in the Two-Dimensional Domain / 206
- 10.2.3 Correlation / 208
- 10.2.4 Dealing with Image Borders / 210
- 10.3 Image Smoothing (Low-pass Filters) / 211
- 10.3.1 Mean Filter / 213
- 10.3.2 Variations / 213
- 10.3.3 Gaussian Blur Filter / 215
- 10.3.4 Median and Other Nonlinear Filters / 216
- 10.4 Image Sharpening (High-pass Filters) / 218
- 10.4.1 The Laplacian / 219
- 10.4.2 Composite Laplacian Mask / 220
- 10.4.3 Directional Difference Filters / 220
- 10.4.4 Unsharp Masking / 221
- 10.4.5 High-Boost Filtering / 221
- 10.5 Region of Interest Processing / 222.
- 10.6 Combining Spatial Enhancement Methods / 223
- 10.7 Tutorial 10.1: Convolution and Correlation / 223
- 10.8 Tutorial 10.2: Smoothing Filters in the Spatial Domain / 225
- 10.9 Tutorial 10.3: Sharpening Filters in the Spatial Domain / 228
- 10.10 Problems / 234
- 11 FREQUENCY-DOMAIN FILTERING 235
- 11.1 Introduction / 235
- 11.2 Fourier Transform: the Mathematical Foundation / 237
- 11.2.1 Basic Concepts / 237
- 11.2.2 The 2D Discrete Fourier Transform: Mathematical Formulation / 239
- 11.2.3 Summary of Properties of the Fourier Transform / 241
- 11.2.4 Other Mathematical Transforms / 242
- 11.3 Low-pass Filtering / 243
- 11.3.1 Ideal LPF / 244
- 11.3.2 Gaussian LPF / 246
- 11.3.3 Butterworth LPF / 246
- 11.4 High-pass Filtering / 248
- 11.4.1 Ideal HPF / 248
- 11.4.2 Gaussian HPF / 250
- 11.4.3 Butterworth HPF / 250
- 11.4.4 High-Frequency Emphasis / 251
- 11.5 Tutorial 11.1: 2D Fourier Transform / 252
- 11.6 Tutorial 11.2: Low-pass Filters in the Frequency Domain / 254
- 11.7 Tutorial 11.3: High-pass Filters in the Frequency Domain / 258
- 11.8 Problems / 264
- 12 IMAGE RESTORATION 265
- 12.1 Modeling of the Image Degradation and Restoration Problem / 265
- 12.2 Noise and Noise Models / 266
- 12.2.1 Selected Noise Probability Density Functions / 267
- 12.2.2 Noise Estimation / 269
- 12.3 Noise Reduction Using Spatial-domain Techniques / 269
- 12.3.1 Mean Filters / 273
- 12.3.2 Order Statistic Filters / 275
- 12.3.3 Adaptive Filters / 278
- 12.4 Noise Reduction Using Frequency-domain Techniques / 278
- 12.4.1 Periodic Noise / 279
- 12.4.2 Bandreject Filter / 280
- 12.4.3 Bandpass Filter / 281
- 12.4.4 Notch Filter / 282
- 12.5 Image Deblurring Techniques / 283
- 12.5.1 Wiener Filtering / 286
- 12.6 Tutorial 12.1: Noise Reduction Using Spatial-domain Techniques / 289
- 12.7 Problems / 296
- 13 MORPHOLOGICAL IMAGE PROCESSING 299
- 13.1 Introduction / 299
- 13.2 Fundamental Concepts and Operations / 300
- 13.2.1 The Structuring Element / 301.
- 13.3 Dilation and Erosion / 304
- 13.3.1 Dilation / 305
- 13.3.2 Erosion / 307
- 13.4 Compound Operations / 310
- 13.4.1 Opening / 310
- 13.4.2 Closing / 311
- 13.4.3 Hit-or-Miss Transform / 313
- 13.5 Morphological Filtering / 314
- 13.6 Basic Morphological Algorithms / 315
- 13.6.1 Boundary Extraction / 317
- 13.6.2 Region Filling / 319
- 13.6.3 Extraction and Labeling of Connected
- Components / 321
- 13.7 Grayscale Morphology / 322
- 13.7.1 Dilation and Erosion / 323
- 13.7.2 Opening and Closing / 323
- 13.7.3 Top-Hat and Bottom-Hat Transformations / 325
- 13.8 Tutorial 13.1: Binary Morphological Image Processing / 325
- 13.9 Tutorial 13.2: Basic Morphological Algorithms / 330
- 13.10 Problems / 334
- 14 EDGE DETECTION 335
- 14.1 Formulation of the Problem / 335
- 14.2 Basic Concepts / 336
- 14.3 First-order Derivative Edge Detection / 338
- 14.4 Second-order Derivative Edge Detection / 343
- 14.4.1 Laplacian of Gaussian / 345
- 14.5 The Canny Edge Detector / 347
- 14.6 Edge Linking and Boundary Detection / 348
- 14.6.1 The Hough Transform / 349
- 14.7 Tutorial 14.1: Edge Detection / 354
- 14.8 Problems / 363
- 15 IMAGE SEGMENTATION 365
- 15.1 Introduction / 365
- 15.2 Intensity-based Segmentation / 367
- 15.2.1 Image Thresholding / 368
- 15.2.2 Global Thresholding / 369
- 15.2.3 The Impact of Illumination and Noise on Thresholding / 370
- 15.2.4 Local Thresholding / 371
- 15.3 Region-based Segmentation / 373
- 15.3.1 Region Growing / 374
- 15.3.2 Region Splitting and Merging / 377
- 15.4 Watershed Segmentation / 377
- 15.4.1 The Distance Transform / 378
- 15.5 Tutorial 15.1: Image Thresholding / 379
- 15.6 Problems / 386
- 16 COLOR IMAGE PROCESSING 387
- 16.1 The Psychophysics of Color / 387
- 16.1.1 Basic Concepts / 388
- 16.1.2 The CIE XYZ Chromaticity Diagram / 390
- 16.1.3 Perceptually Uniform Color Spaces / 393
- 16.1.4 ICC Profiles / 395
- 16.2 Color Models / 396
- 16.2.1 The RGB Color Model / 396
- 16.2.2 The CMY and CMYK Color Models / 398.
- 16.2.3 The HSV Color Model / 398
- 16.2.4 The YIQ (NTSC) Color Model / 401
- 16.2.5 The YCbCr Color Model / 401
- 16.3 Representation of Color Images in MATLAB / 401
- 16.3.1 RGB Images / 402
- 16.3.2 Indexed Images / 403
- 16.4 Pseudocolor Image Processing / 406
- 16.4.1 Intensity Slicing / 406
- 16.4.2 Gray Level to Color Transformations / 407
- 16.4.3 Pseudocoloring in the Frequency Domain / 408
- 16.5 Full-color Image Processing / 409
- 16.5.1 Color Transformations / 410
- 16.5.2 Histogram Processing / 412
- 16.5.3 Color Image Smoothing and Sharpening / 412
- 16.5.4 Color Noise Reduction / 414
- 16.5.5 Color-Based Image Segmentation / 414
- 16.5.6 Color Edge Detection / 417
- 16.6 Tutorial 16.1: Pseudocolor Image Processing / 419
- 16.7 Tutorial 16.2: Full-color Image Processing / 420
- 16.8 Problems / 425
- 17 IMAGE COMPRESSION AND CODING 427
- 17.1 Introduction / 427
- 17.2 Basic Concepts / 428
- 17.2.1 Redundancy / 428
- 17.2.2 Image Encoding and Decoding Model / 431
- 17.3 Lossless and Lossy Compression Techniques / 432
- 17.3.1 Lossless Compression Techniques / 432
- 17.3.2 Lossy Compression Techniques / 433
- 17.4 Image Compression Standards / 435
- 17.4.1 Binary Image Compression Standards / 435
- 17.4.2 Continuous Tone Still Image Compression Standards / 435
- 17.4.3 JPEG / 436
- 17.4.4 JPEG 2000 / 437
- 17.4.5 JPEG-LS / 437
- 17.5 Image Quality Measures / 438
- 17.5.1 Subjective Quality Measurement / 438
- 17.5.2 Objective Quality Measurement / 439
- 17.6 Tutorial 17.1: Image Compression / 440
- 18 FEATURE EXTRACTION AND REPRESENTATION 447
- 18.1 Introduction / 447
- 18.2 Feature Vectors and Vector Spaces / 448
- 18.2.1 Invariance and Robustness / 449
- 18.3 Binary Object Features / 450
- 18.3.1 Area / 450
- 18.3.2 Centroid / 450
- 18.3.3 Axis of Least Second Moment / 451
- 18.3.4 Projections / 451
- 18.3.5 Euler Number / 452
- 18.3.6 Perimeter / 453
- 18.3.7 Thinness Ratio / 453
- 18.3.8 Eccentricity / 454.
- 18.3.9 Aspect Ratio / 454
- 18.3.10 Moments / 455
- 18.4 Boundary Descriptors / 456
- 18.4.1 Chain Code, Freeman Code, and Shape Number / 459
- 18.4.2 Signatures / 461
- 18.4.3 Fourier Descriptors / 462
- 18.5 Histogram-based (Statistical) Features / 464
- 18.6 Texture Features / 466
- 18.7 Tutorial 18.1: Feature Extraction and Representation / 470
- 18.8 Problems / 474
- 19 VISUAL PATTERN RECOGNITION 475
- 19.1 Introduction / 475
- 19.2 Fundamentals / 476
- 19.2.1 Design and Implementation of a Visual Pattern Classifier / 476
- 19.2.2 Patterns and Pattern Classes / 478
- 19.2.3 Data Preprocessing / 479
- 19.2.4 Training and Test Sets / 480
- 19.2.5 Confusion Matrix / 480
- 19.2.6 System Errors / 481
- 19.2.7 Hit Rates, False Alarm Rates, and ROC Curves / 481
- 19.2.8 Precision and Recall / 482
- 19.2.9 Distance and Similarity Measures / 485
- 19.3 Statistical Pattern Classification Techniques / 487
- 19.3.1 Minimum Distance Classifier / 488
- 19.3.2 k-Nearest Neighbors Classifier / 490
- 19.3.3 Bayesian Classifier / 490
- 19.4 Tutorial 19.1: Pattern Classification / 491
- 19.5 Problems / 497
- PART II VIDEO PROCESSING
- 20 VIDEO FUNDAMENTALS 501
- 20.1 Basic Concepts and Terminology / 501
- 20.2 Monochrome Analog Video / 507
- 20.2.1 Analog Video Raster / 507
- 20.2.2 Blanking Intervals / 508
- 20.2.3 Synchronization Signals / 509
- 20.2.4 Spectral Content of Composite Monochrome Analog Video / 509
- 20.3 Color in Video / 510
- 20.4 Analog Video Standards / 512
- 20.4.1 NTSC / 513
- 20.4.2 PAL / 513
- 20.4.3 SECAM / 514
- 20.4.4 HDTV / 514
- 20.5 Digital Video Basics / 514
- 20.5.1 Advantages of Digital Video / 515
- 20.5.2 Parameters of a Digital Video Sequence / 516
- 20.5.3 The Audio Component / 517
- 20.6 Analog-to-Digital Conversion / 517
- 20.7 Color Representation and Chroma Subsampling / 520
- 20.8 Digital Video Formats and Standards / 521
- 20.8.1 The Rec. 601 Digital Video Format / 522
- 20.8.2 The Common Intermediate Format / 523.
- 20.8.3 The Source Intermediate Format / 524
- 20.9 Video Compression Techniques and Standards / 524
- 20.9.1 Video Compression Standards, Codecs, and Containers / 525
- 20.10 Video Processing in MATLAB / 526
- 20.10.1 Reading Video Files / 527
- 20.10.2 Processing Video Files / 527
- 20.10.3 Playing Video Files / 527
- 20.10.4 Writing Video Files / 528
- 20.11 Tutorial 20.1: Basic Digital Video Manipulation in MATLAB / 528
- 20.12 Tutorial 20.2: Working with YUV Video Data / 534
- 20.13 Problems / 539
- 21 VIDEO SAMPLING RATE AND STANDARDS CONVERSION 541
- 21.1 Video Sampling / 541
- 21.2 Sampling Rate Conversion / 542
- 21.3 Standards Conversion / 543
- 21.3.1 Deinterlacing / 543
- 21.3.2 Conversion between PAL and NTSC Signals / 545
- 21.3.3 Color Space Conversion / 545
- 21.3.4 Aspect Ratio Conversion / 546
- 21.3.5 3:2 Pull-Down / 547
- 21.4 Tutorial 21.1: Line Down-Conversion / 548
- 21.5 Tutorial 21.2: Deinterlacing / 550
- 21.6 Tutorial 21.3: NTSC to PAL Conversion / 556
- 21.7 Tutorial 21.4: 3:2 Pull-Down / 557
- 21.8 Problems / 559
- 22 DIGITAL VIDEO PROCESSING TECHNIQUES AND APPLICATIONS 561
- 22.1 Fundamentals of Motion Estimation and Motion Compensation / 561
- 22.2 General Methodologies in Motion Estimation / 564
- 22.2.1 Motion Representation / 566
- 22.2.2 Motion Estimation Criteria / 567
- 22.2.3 Optimization Methods / 567
- 22.3 Motion Estimation Algorithms / 568
- 22.3.1 Exhaustive Search Block Matching Algorithm / 568
- 22.3.2 Fast Algorithms / 570
- 22.3.3 Hierarchical Block Matching Algorithm / 571
- 22.3.4 Phase Correlation Method / 573
- 22.4 Video Enhancement and Noise Reduction / 573
- 22.4.1 Noise Reduction in Video / 574
- 22.4.2 Interframe Filtering Techniques / 575
- 22.5 Case Study: Object Segmentation and Tracking in the Presence of Complex Background / 576
- 22.6 Tutorial 22.1: Block-based Motion Estimation / 579
- 22.7 Tutorial 22.2: Intraframe and Interframe Filtering Techniques / 585
- 22.8 Problems / 589.
- Appendix A: HUMAN VISUAL PERCEPTION 591
- A.1 Introduction / 591
- A.2 The Human Eye / 592
- A.3 Characteristics of Human Vision / 596
- A.3.1 Resolution, Viewing Distance, and Viewing Angle / 596
- A.3.2 Detail and Sharpness Perception / 598
- A.3.3 Optical Transfer Function and Modulation Transfer Function / 599
- A.3.4 Brightness Perception / 600
- A.3.5 Contrast Ratio and Contrast Sensitivity Function / 603
- A.3.6 Perception of Motion / 605
- A.3.7 Spatiotemporal Resolution and Frequency Response / 606
- A.3.8 Masking / 608
- A.4 Implications and Applications of Knowledge about the Human Visual System / 609
- Appendix B: GUI DEVELOPMENT 611
- B.1 Introduction / 611
- B.2 GUI File Structure / 611
- B.3 Passing System Control / 613
- B.4 The UserData Object / 615
- B.5 A Working GUI Demo / 616
- B.6 Concluding Remarks / 618
- REFERENCES 619
- INDEX 627.