Mobile and wireless communications for IMT-advanced and beyond
A timely addition to the understanding of IMT-Advanced, this book places particular emphasis on the new areas which IMT-Advanced technologies rely on compared with their predecessors. These latest areas include Radio Resource Management, Carrier Aggregation, improved MIMO support and Relaying. Each...
Otros Autores: | , , |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Chichester, West Sussex, U.K. :
Wiley
2011.
|
Edición: | 1st edition |
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009628006106719 |
Tabla de Contenidos:
- About the Editors xiii
- Preface xv
- Acknowledgements xvii
- List of Abbreviations xix
- List of Contributors xxv
- 1 Introduction 1
- 1.1 Market and Technology Trends 1
- 1.2 Technology Evolution 3
- 1.3 Development of IMT-Advanced and Beyond 6
- References 8
- 2 Radio Resource Management 11
- 2.1 Overview of Radio Resource Management 11
- 2.2 Resource Allocation in IMT-Advanced Technologies 13
- 2.2.1 Main IMT-Advanced Characteristics 13
- 2.2.2 Scheduling 16
- 2.2.3 Interference Management 16
- 2.2.4 Carrier Aggregation 18
- 2.2.5 MBMS Transmission 18
- 2.3 Dynamic Resource Allocation 19
- 2.3.1 Resource Allocation and Packet Scheduling Using Utility Theory 19
- 2.3.2 Resource Allocation with Relays 22
- 2.3.3 Multiuser Resource Allocation Maximizing the UE QoS 24
- 2.3.4 Optimization Problems and Performance 26
- 2.4 Interference Coordination in Mobile Networks 26
- 2.4.1 Power Control 27
- 2.4.2 Resource Partitioning 28
- 2.4.3 MIMO Busy Burst for Interference Avoidance 33
- 2.5 Efficient MBMS Transmission 35
- 2.5.1 MBMS Transmission 36
- 2.5.2 Performance Assessment 37
- 2.6 Future Directions of RRM Techniques 39
- References 40
- 3 Carrier Aggregation 43
- 3.1 Basic Concepts 43
- 3.2 ITU-R Requirements and Implementation in Standards 45
- 3.3 Evolution Towards Future Technologies 48
- 3.3.1 Channel Coding 48
- 3.3.2 Scheduling 51
- 3.3.3 Channel Quality Indicator 53
- 3.3.4 Additional Research Directions 54
- 3.4 Cognitive Radio Enabling Dynamic/Opportunistic Carrier Aggregation 55
- 3.4.1 Spectrum Sharing and Opportunistic Carrier Aggregation 56
- 3.4.2 Spectrum Awareness 58
- 3.4.3 Cognitive Component Carrier Identification, Selection and Mobility 59
- 3.5 Implications for Signaling and Architecture 59
- 3.6 Hardware and Legal Limitations 60
- References 61
- 4 Spectrum Sharing 63
- 4.1 Introduction 63
- 4.2 Literature Overview 64
- 4.2.1 Spectrum Sharing from a Game Theoretic Perspective 66
- 4.2.2 Femtocells 67.
- 4.3 Spectrum Sharing with Game Theory 68
- 4.3.1 Noncooperative Case 68
- 4.3.2 Hierarchical Case 69
- 4.4 Spectrum Trading 70
- 4.4.1 Revenue and Cost Function for the Offering Operator 73
- 4.4.2 Numerical Results 74
- 4.5 Femtocells and Opportunistic Spectrum Usage 75
- 4.5.1 Femtocells and Standardization 77
- 4.5.2 Self-Organized Femtocells 79
- 4.5.3 Beacon-Based Femtocells 81
- 4.5.4 Femtocells with Intercell Interference Coordination 82
- 4.5.5 Femtocells with Game Theory 83
- 4.6 Conclusion, Discussion and Future Research 84
- 4.6.1 Future Research 85
- References 86
- 5 Multiuser MIMO Systems 89
- 5.1 MIMO Fundamentals 89
- 5.1.1 System Model 91
- 5.1.2 Point-to-Point MIMO Communications 92
- 5.1.3 Multiuser MIMO Communications 96
- 5.1.4 MIMO with Interference 100
- 5.2 MIMO in LTE-Advanced and 802.16m 101
- 5.2.1 LTE-Advanced 102
- 5.2.2 WiMAX Evolution 104
- 5.3 Generic Linear Precoding with CSIT 104
- 5.3.1 Transmitter / Receiver Design 105
- 5.3.2 Transceiver Design with Interference Nulling 110
- 5.4 CSI Acquisition for Multiuser MIMO 112
- 5.4.1 Limited Feedback 112
- 5.4.2 CSI Sounding 113
- 5.5 Future Directions of MIMO Techniques 114
- References 115
- 6 Coordinated Multi Point (CoMP) Systems 121
- 6.1 Overview of CoMP 121
- 6.1.1 CoMP Types 122
- 6.1.2 Architectures and Clustering 123
- 6.1.3 Theoretical Performance Limits and Implementation Constraints 126
- 6.2 CoMP in the Standardization Bodies 129
- 6.2.1 Overview of CoMP Studies 129
- 6.2.2 Design Choices for a CoMP Functionality 131
- 6.3 Generic System Model for Downlink CoMP 133
- 6.3.1 SINR for Linear Transmissions 133
- 6.3.2 Compact Matricial Model 134
- 6.4 Joint Processing Techniques 134
- 6.4.1 State of the Art 135
- 6.4.2 Potential of Joint Processing 136
- 6.4.3 Dynamic Joint Processing 137
- 6.4.4 Uplink Joint Processing 141
- 6.5 Coordinated Beamforming and Scheduling Techniques 142
- 6.5.1 State of the Art 142
- 6.5.2 Decentralized Coordinated Beamforming 143.
- 6.5.3 Coordinated Scheduling via Worst Companion Reporting 145
- 6.6 Practical Implementation of CoMP in a Trial Environment 147
- 6.6.1 Setup and Scenarios 149
- 6.6.2 Measurement Results 149
- 6.7 Future Directions 151
- References 152
- 7 Relaying for IMT-Advanced 157
- 7.1 An Overview of Relaying 157
- 7.1.1 Relay Evolution 158
- 7.1.2 Relaying Deployment Scenarios 159
- 7.1.3 Relaying Protocol Strategies 160
- 7.1.4 Half Duplex and Full Duplex Relaying 162
- 7.1.5 Numerical Example 162
- 7.2 Relaying in the Standard Bodies 164
- 7.2.1 Relay Types in LTE-Advanced Rel-10 164
- 7.2.2 Relay Nodes in IEEE 802.16m 166
- 7.3 Comparison of Relaying and CoMP 166
- 7.3.1 Protocols and Resource Management 167
- 7.3.2 Simulation Results 169
- 7.4 In-band RNs versus Femtocells 171
- 7.5 Cooperative Relaying for Beyond IMT-Advanced 173
- 7.6 Relaying for beyond IMT-Advanced 176
- 7.6.1 Multihop RNs 176
- 7.6.2 Mobile Relay 177
- 7.6.3 Network Coding 177
- References 177
- 8 Network Coding in Wireless Communications 181
- 8.1 An Overview of Network Coding 181
- 8.1.1 Historical Background 182
- 8.1.2 Types of Network Coding 183
- 8.1.3 Applications of Network Coding 183
- 8.2 Uplink Network Coding 188
- 8.2.1 Detection Strategies 188
- 8.2.2 User Grouping 190
- 8.2.3 Relay Selection 191
- 8.2.4 Performance 192
- 8.2.5 Integration in IMT-Advanced and Beyond 194
- 8.3 Nonbinary Network Coding 194
- 8.3.1 Nonbinary NC based on UE Cooperation 195
- 8.3.2 Nonbinary NC for Multiuser and Multirelay 196
- 8.3.3 Performance 197
- 8.3.4 Integration in IMT-Advanced and Beyond 198
- 8.4 Network Coding for Broadcast and Multicast 199
- 8.4.1 Efficient Broadcast Network Coding Scheme 200
- 8.4.2 Performance 201
- 8.5 Conclusions and Future Directions 202
- References 203
- 9 Device-to-Device Communication 207
- 9.1 Introduction 207
- 9.2 State of the Art 208
- 9.2.1 In Standards 208
- 9.2.2 In Literature 210
- 9.3 Device-to-Device Communication as Underlay to Cellular Networks 211.
- 9.3.1 Session Setup 212
- 9.3.2 D2D Transmit Power 214
- 9.3.3 Multiantenna Techniques 215
- 9.3.4 Radio Resource Management 220
- 9.4 Future Directions 225
- References 228
- 10 The End-to-end Performance of LTE-Advanced 231
- 10.1 IMT-Advanced Evaluation: ITU Process, Scenarios and Requirements 231
- 10.1.1 ITU-R Process for IMT-Advanced 232
- 10.1.2 Evaluation Scenarios 234
- 10.1.3 Performance Requirements 235
- 10.2 Short Introduction to LTE-Advanced Features 238
- 10.2.1 The WINNER+ Evaluation Group Assessment Approach 238
- 10.3 Performance of LTE-Advanced 239
- 10.3.1 3GPP Self-evaluation 239
- 10.3.2 Simulative Performance Assessment by WINNER+ 241
- 10.3.3 LTE-Advanced Performance in the Rural Indian Open Area Scenario 243
- 10.4 Channel Model Implementation and Calibration 243
- 10.4.1 IMT-Advanced Channel Model 243
- 10.4.2 Calibration of Large-Scale Parameters 246
- 10.4.3 Calibration of Small-Scale Parameters 247
- 10.5 Simulator Calibration 248
- 10.6 Conclusion and Outlook on the IMT-Advanced Process 249
- References 250
- 11 Future Directions 251
- 11.1 Radio Resource Allocation 252
- 11.2 Heterogeneous Networks 252
- 11.3 MIMO and CoMP 253
- 11.4 Relaying and Network Coding 254
- 11.5 Device-to-Device Communications 254
- 11.6 Green and Energy Efficiency 255
- References 256
- Appendices 259
- Appendix A Resource Allocation 261
- A.1 Dynamic Resource Allocation 261
- A.1.1 Utility Predictive Scheduler 261
- A.1.2 Resource Allocation with Relays 261
- A.2 Multiuser Resource Allocation 263
- A.2.1 PHY/MAC Layer Model 263
- A.2.2 APP Layer Model 263
- A.2.3 Optimization Problem 264
- A.2.4 Simulation Results 265
- A.3 Busy Burst Extended to MIMO 266
- A.4 Efficient MBMS Transmission 267
- A.4.1 Service Operation 267
- A.4.2 Frequency Division Multiplexing (FDM) Performance 268
- Appendix B Spectrum Awareness 269
- B.1 Spectrum Sensing 269
- B.2 Geo-Location Databases 270
- B.3 Beacon Signaling 270
- Appendix C CoordinatedMultiPoint (CoMP) 271.
- C.1 Joint Processing Methods 271
- C.1.1 Partial Joint Processing 271
- C.1.2 Dynamic Base Station Clustering 271
- C.2 Coordinated Beamforming and Scheduling 273
- C.2.1 Decentralized Coordinated Beamforming 273
- C.2.2 Coordinated Scheduling via Worst Companion Reporting 276
- C.3 Test-Bed: Distributed Realtime Implementation 276
- Appendix D Network Coding 281
- D.1 Nonbinary NC based on UE Cooperation 281
- D.2 Multiuser and Multirelay Scenario 282
- Appendix E LTE-Advanced Analytical Performance and Peak Spectral Efficiency 285
- E.1 Analytical and Inspection Performance Assessment by WINNER+ 285
- E.1.1 Analytical Evaluation 285
- E.1.2 Inspection 286
- E.2 Peak Spectral Efficiency Calculation 287
- E.2.1 FDD Mode Downlink Direction 287
- E.2.2 FDD Mode Uplink Direction 288
- E.2.3 TDD Mode Downlink Direction 289
- E.2.4 TDD Mode Uplink Direction 291
- E.2.5 Comparison with Self-Evaluation 292
- References 292
- Index 295.