Mobile and wireless communications for IMT-advanced and beyond

A timely addition to the understanding of IMT-Advanced, this book places particular emphasis on the new areas which IMT-Advanced technologies rely on compared with their predecessors. These latest areas include Radio Resource Management, Carrier Aggregation, improved MIMO support and Relaying. Each...

Descripción completa

Detalles Bibliográficos
Otros Autores: Osseiran, Afif (-), Monserrat, Jose F., Mohr, Werner, 1955-
Formato: Libro electrónico
Idioma:Inglés
Publicado: Chichester, West Sussex, U.K. : Wiley 2011.
Edición:1st edition
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009628006106719
Tabla de Contenidos:
  • About the Editors xiii
  • Preface xv
  • Acknowledgements xvii
  • List of Abbreviations xix
  • List of Contributors xxv
  • 1 Introduction 1
  • 1.1 Market and Technology Trends 1
  • 1.2 Technology Evolution 3
  • 1.3 Development of IMT-Advanced and Beyond 6
  • References 8
  • 2 Radio Resource Management 11
  • 2.1 Overview of Radio Resource Management 11
  • 2.2 Resource Allocation in IMT-Advanced Technologies 13
  • 2.2.1 Main IMT-Advanced Characteristics 13
  • 2.2.2 Scheduling 16
  • 2.2.3 Interference Management 16
  • 2.2.4 Carrier Aggregation 18
  • 2.2.5 MBMS Transmission 18
  • 2.3 Dynamic Resource Allocation 19
  • 2.3.1 Resource Allocation and Packet Scheduling Using Utility Theory 19
  • 2.3.2 Resource Allocation with Relays 22
  • 2.3.3 Multiuser Resource Allocation Maximizing the UE QoS 24
  • 2.3.4 Optimization Problems and Performance 26
  • 2.4 Interference Coordination in Mobile Networks 26
  • 2.4.1 Power Control 27
  • 2.4.2 Resource Partitioning 28
  • 2.4.3 MIMO Busy Burst for Interference Avoidance 33
  • 2.5 Efficient MBMS Transmission 35
  • 2.5.1 MBMS Transmission 36
  • 2.5.2 Performance Assessment 37
  • 2.6 Future Directions of RRM Techniques 39
  • References 40
  • 3 Carrier Aggregation 43
  • 3.1 Basic Concepts 43
  • 3.2 ITU-R Requirements and Implementation in Standards 45
  • 3.3 Evolution Towards Future Technologies 48
  • 3.3.1 Channel Coding 48
  • 3.3.2 Scheduling 51
  • 3.3.3 Channel Quality Indicator 53
  • 3.3.4 Additional Research Directions 54
  • 3.4 Cognitive Radio Enabling Dynamic/Opportunistic Carrier Aggregation 55
  • 3.4.1 Spectrum Sharing and Opportunistic Carrier Aggregation 56
  • 3.4.2 Spectrum Awareness 58
  • 3.4.3 Cognitive Component Carrier Identification, Selection and Mobility 59
  • 3.5 Implications for Signaling and Architecture 59
  • 3.6 Hardware and Legal Limitations 60
  • References 61
  • 4 Spectrum Sharing 63
  • 4.1 Introduction 63
  • 4.2 Literature Overview 64
  • 4.2.1 Spectrum Sharing from a Game Theoretic Perspective 66
  • 4.2.2 Femtocells 67.
  • 4.3 Spectrum Sharing with Game Theory 68
  • 4.3.1 Noncooperative Case 68
  • 4.3.2 Hierarchical Case 69
  • 4.4 Spectrum Trading 70
  • 4.4.1 Revenue and Cost Function for the Offering Operator 73
  • 4.4.2 Numerical Results 74
  • 4.5 Femtocells and Opportunistic Spectrum Usage 75
  • 4.5.1 Femtocells and Standardization 77
  • 4.5.2 Self-Organized Femtocells 79
  • 4.5.3 Beacon-Based Femtocells 81
  • 4.5.4 Femtocells with Intercell Interference Coordination 82
  • 4.5.5 Femtocells with Game Theory 83
  • 4.6 Conclusion, Discussion and Future Research 84
  • 4.6.1 Future Research 85
  • References 86
  • 5 Multiuser MIMO Systems 89
  • 5.1 MIMO Fundamentals 89
  • 5.1.1 System Model 91
  • 5.1.2 Point-to-Point MIMO Communications 92
  • 5.1.3 Multiuser MIMO Communications 96
  • 5.1.4 MIMO with Interference 100
  • 5.2 MIMO in LTE-Advanced and 802.16m 101
  • 5.2.1 LTE-Advanced 102
  • 5.2.2 WiMAX Evolution 104
  • 5.3 Generic Linear Precoding with CSIT 104
  • 5.3.1 Transmitter / Receiver Design 105
  • 5.3.2 Transceiver Design with Interference Nulling 110
  • 5.4 CSI Acquisition for Multiuser MIMO 112
  • 5.4.1 Limited Feedback 112
  • 5.4.2 CSI Sounding 113
  • 5.5 Future Directions of MIMO Techniques 114
  • References 115
  • 6 Coordinated Multi Point (CoMP) Systems 121
  • 6.1 Overview of CoMP 121
  • 6.1.1 CoMP Types 122
  • 6.1.2 Architectures and Clustering 123
  • 6.1.3 Theoretical Performance Limits and Implementation Constraints 126
  • 6.2 CoMP in the Standardization Bodies 129
  • 6.2.1 Overview of CoMP Studies 129
  • 6.2.2 Design Choices for a CoMP Functionality 131
  • 6.3 Generic System Model for Downlink CoMP 133
  • 6.3.1 SINR for Linear Transmissions 133
  • 6.3.2 Compact Matricial Model 134
  • 6.4 Joint Processing Techniques 134
  • 6.4.1 State of the Art 135
  • 6.4.2 Potential of Joint Processing 136
  • 6.4.3 Dynamic Joint Processing 137
  • 6.4.4 Uplink Joint Processing 141
  • 6.5 Coordinated Beamforming and Scheduling Techniques 142
  • 6.5.1 State of the Art 142
  • 6.5.2 Decentralized Coordinated Beamforming 143.
  • 6.5.3 Coordinated Scheduling via Worst Companion Reporting 145
  • 6.6 Practical Implementation of CoMP in a Trial Environment 147
  • 6.6.1 Setup and Scenarios 149
  • 6.6.2 Measurement Results 149
  • 6.7 Future Directions 151
  • References 152
  • 7 Relaying for IMT-Advanced 157
  • 7.1 An Overview of Relaying 157
  • 7.1.1 Relay Evolution 158
  • 7.1.2 Relaying Deployment Scenarios 159
  • 7.1.3 Relaying Protocol Strategies 160
  • 7.1.4 Half Duplex and Full Duplex Relaying 162
  • 7.1.5 Numerical Example 162
  • 7.2 Relaying in the Standard Bodies 164
  • 7.2.1 Relay Types in LTE-Advanced Rel-10 164
  • 7.2.2 Relay Nodes in IEEE 802.16m 166
  • 7.3 Comparison of Relaying and CoMP 166
  • 7.3.1 Protocols and Resource Management 167
  • 7.3.2 Simulation Results 169
  • 7.4 In-band RNs versus Femtocells 171
  • 7.5 Cooperative Relaying for Beyond IMT-Advanced 173
  • 7.6 Relaying for beyond IMT-Advanced 176
  • 7.6.1 Multihop RNs 176
  • 7.6.2 Mobile Relay 177
  • 7.6.3 Network Coding 177
  • References 177
  • 8 Network Coding in Wireless Communications 181
  • 8.1 An Overview of Network Coding 181
  • 8.1.1 Historical Background 182
  • 8.1.2 Types of Network Coding 183
  • 8.1.3 Applications of Network Coding 183
  • 8.2 Uplink Network Coding 188
  • 8.2.1 Detection Strategies 188
  • 8.2.2 User Grouping 190
  • 8.2.3 Relay Selection 191
  • 8.2.4 Performance 192
  • 8.2.5 Integration in IMT-Advanced and Beyond 194
  • 8.3 Nonbinary Network Coding 194
  • 8.3.1 Nonbinary NC based on UE Cooperation 195
  • 8.3.2 Nonbinary NC for Multiuser and Multirelay 196
  • 8.3.3 Performance 197
  • 8.3.4 Integration in IMT-Advanced and Beyond 198
  • 8.4 Network Coding for Broadcast and Multicast 199
  • 8.4.1 Efficient Broadcast Network Coding Scheme 200
  • 8.4.2 Performance 201
  • 8.5 Conclusions and Future Directions 202
  • References 203
  • 9 Device-to-Device Communication 207
  • 9.1 Introduction 207
  • 9.2 State of the Art 208
  • 9.2.1 In Standards 208
  • 9.2.2 In Literature 210
  • 9.3 Device-to-Device Communication as Underlay to Cellular Networks 211.
  • 9.3.1 Session Setup 212
  • 9.3.2 D2D Transmit Power 214
  • 9.3.3 Multiantenna Techniques 215
  • 9.3.4 Radio Resource Management 220
  • 9.4 Future Directions 225
  • References 228
  • 10 The End-to-end Performance of LTE-Advanced 231
  • 10.1 IMT-Advanced Evaluation: ITU Process, Scenarios and Requirements 231
  • 10.1.1 ITU-R Process for IMT-Advanced 232
  • 10.1.2 Evaluation Scenarios 234
  • 10.1.3 Performance Requirements 235
  • 10.2 Short Introduction to LTE-Advanced Features 238
  • 10.2.1 The WINNER+ Evaluation Group Assessment Approach 238
  • 10.3 Performance of LTE-Advanced 239
  • 10.3.1 3GPP Self-evaluation 239
  • 10.3.2 Simulative Performance Assessment by WINNER+ 241
  • 10.3.3 LTE-Advanced Performance in the Rural Indian Open Area Scenario 243
  • 10.4 Channel Model Implementation and Calibration 243
  • 10.4.1 IMT-Advanced Channel Model 243
  • 10.4.2 Calibration of Large-Scale Parameters 246
  • 10.4.3 Calibration of Small-Scale Parameters 247
  • 10.5 Simulator Calibration 248
  • 10.6 Conclusion and Outlook on the IMT-Advanced Process 249
  • References 250
  • 11 Future Directions 251
  • 11.1 Radio Resource Allocation 252
  • 11.2 Heterogeneous Networks 252
  • 11.3 MIMO and CoMP 253
  • 11.4 Relaying and Network Coding 254
  • 11.5 Device-to-Device Communications 254
  • 11.6 Green and Energy Efficiency 255
  • References 256
  • Appendices 259
  • Appendix A Resource Allocation 261
  • A.1 Dynamic Resource Allocation 261
  • A.1.1 Utility Predictive Scheduler 261
  • A.1.2 Resource Allocation with Relays 261
  • A.2 Multiuser Resource Allocation 263
  • A.2.1 PHY/MAC Layer Model 263
  • A.2.2 APP Layer Model 263
  • A.2.3 Optimization Problem 264
  • A.2.4 Simulation Results 265
  • A.3 Busy Burst Extended to MIMO 266
  • A.4 Efficient MBMS Transmission 267
  • A.4.1 Service Operation 267
  • A.4.2 Frequency Division Multiplexing (FDM) Performance 268
  • Appendix B Spectrum Awareness 269
  • B.1 Spectrum Sensing 269
  • B.2 Geo-Location Databases 270
  • B.3 Beacon Signaling 270
  • Appendix C CoordinatedMultiPoint (CoMP) 271.
  • C.1 Joint Processing Methods 271
  • C.1.1 Partial Joint Processing 271
  • C.1.2 Dynamic Base Station Clustering 271
  • C.2 Coordinated Beamforming and Scheduling 273
  • C.2.1 Decentralized Coordinated Beamforming 273
  • C.2.2 Coordinated Scheduling via Worst Companion Reporting 276
  • C.3 Test-Bed: Distributed Realtime Implementation 276
  • Appendix D Network Coding 281
  • D.1 Nonbinary NC based on UE Cooperation 281
  • D.2 Multiuser and Multirelay Scenario 282
  • Appendix E LTE-Advanced Analytical Performance and Peak Spectral Efficiency 285
  • E.1 Analytical and Inspection Performance Assessment by WINNER+ 285
  • E.1.1 Analytical Evaluation 285
  • E.1.2 Inspection 286
  • E.2 Peak Spectral Efficiency Calculation 287
  • E.2.1 FDD Mode Downlink Direction 287
  • E.2.2 FDD Mode Uplink Direction 288
  • E.2.3 TDD Mode Downlink Direction 289
  • E.2.4 TDD Mode Uplink Direction 291
  • E.2.5 Comparison with Self-Evaluation 292
  • References 292
  • Index 295.