Advanced organic chemistry reactions and mechanisms

Advanced Organic Chemistry: Reactions and Mechanisms covers the four types of reactions -- substitution, addition, elimination and rearrangement; the three types of reagents -- nucleophiles, electrophiles and radicals; and the two effects -- electroni

Detalles Bibliográficos
Otros Autores: Singh, Maya Shankar, 1960- author (author)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Delhi : Dorling Kindersley (India) [2007]
Colección:Always learning.
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009628004906719
Tabla de Contenidos:
  • Cover
  • Preface
  • Acknowledgements
  • Contents
  • Chapter 1: Concept of Acids and Bases
  • 1.1 Introduction
  • 1.1.1 What Is an Acid or a Base
  • 1.1.2 Properties of Acids
  • 1.1.3 Properties of Bases
  • 1.2 Acidity and Basicity of Molecules
  • 1.2.1 Acidity
  • 1.2.2 Carbon Acids
  • 1.2.3 Nitrogen Acids
  • 1.2.4 Organosulphur Oxyacids
  • 1.2.5 Basicity
  • 1.2.6 Effects Decreasing Electron Density on Nitrogen
  • 1.3 Definition of pka
  • 1.4 pH Box
  • 1.4.1 pka Box
  • 1.4.2 pH of Strong Acids and Bases
  • 1.4.3 Strong Acids
  • 1.4.4 Weak Acids
  • 1.4.5 Strong Bases
  • 1.4.6 Weak Bases
  • 1.4.7 pH of Weak Acids and Bases
  • 1.5 Hard and Soft Acids and Bases
  • 1.5.1 Lewis Acids and Bases
  • 1.5.2 Hard and soft Acids
  • 1.5.3 Hard and Soft Bases
  • 1.5.4 Hard and Soft Acid-Base Classification
  • 1.6 Effect of Structure on Strength of Acids and Bases
  • 1.6.1 Field Effect
  • 1.6.2 Resonance Effect
  • 1.6.3 Periodic Table correlation
  • 1.6.4 Statistical Effect
  • 1.6.5 Hydrogen-bonding
  • 1.6.6 Steric Effect
  • 1.6.7 Hybridization
  • 1.7 Effects of Medium on Acid and Base Strength
  • 1.8 Levelling Effect
  • 1.9 Summary
  • Problems
  • Objective Type Questions
  • Chapter 2: Delocalized Chemical Bonding and Electronic Effects
  • 2.1 Introduction
  • 2.2 Resonance
  • 2.3 Resonance Energy
  • 2.4 Resonance Effect
  • 2.5 Hyperconjugation (Baker-N athan Effect)
  • 2.5.1 Negative hyperconjugation
  • 2.6 Tautomerism
  • 2.6.1 Mechanism of Keto-Enol Interconversion
  • 2.6.2 Differences between Tautomerism and Resonance
  • 2.7 Nitro-acinitro System
  • 2.8 Inductive Effect
  • 2.9 Electromeric Effect
  • 2.10 Steric Effect
  • 2.11 Hydrogen Bonding
  • 2.12 Summary
  • Problems
  • Objective Type Questions
  • Chapter 3: Aliphatic Nucleophilic Substitution Reactions
  • 3.1 Introduction
  • 3.2 Mechanism of SN2 Reaction
  • 3.3 Nucleophile in SN2 Reaction.
  • 3.4 Leaving Group in SN2 Reaction
  • 3.5 Interm olecular versus Intram olecular Reactions
  • 3.5.1 Baldwin's Rules
  • 3.6 Mechanism of SN1 Reaction
  • 3.7 Leaving Group in SN1 Reaction
  • 3.8 Nucleophile in SN1 Reaction
  • 3.9 Carbocation Rearrangements
  • 3.10 Stereochemistry of SN2 and SN1 Reactions
  • 3.11 Role of Solvent in SN2 and SN1 Reactions
  • 3.12 Solvation Effect
  • 3.13 Effect of Solvent on Rate of Reaction
  • 3.13.1 Effect of solvent on Rate of SN1 Reaction
  • 3.13.2 Effect of Solvent on Rate of SN2 Reaction
  • 3.14 Benzylic, Allylic, Vinylic and Aryl Halides
  • 3.15 Competition between SN2 and SN1 Reactions
  • 3.16 Mixed SN1 and SN2 Mechanism
  • 3.17 Neighbouring Group Participation
  • 3.18 Summary
  • Problems
  • Objective Type Questions
  • Chapter 4: Elimination Reactions
  • 4.1 Introduction
  • 4.1.1 Substitution and Elimination
  • 4.2 a-Elimination
  • 4.2.1 Elimination When Nucleophile Attacks Hydrogen
  • 4.2.2 Nucleophile Effects on Elimination and Substitution
  • 4.3 E1 and E2 Mechanism s
  • 4.4 Orientation of Double Bond
  • 4.5 Role of Leaving Group
  • 4.5.1 Stereoselective E1 Reactions
  • 4.5.2 Regioselective E1 Reactions
  • 4.5.3 Anti-periplanar Transition States of E2 Eliminations
  • 4.5.4 Stereospecific E2 Eliminations
  • 4.6 E2 Eliminations from Cyclohexanes
  • 4.7 Regioselectivity of E2 Elim inations
  • 4.8 E2 Elimination from Vinyl Halides: How to Make Alkynes
  • 4.9 Anion-stabilizing Groups Allow E1cB
  • 4.10 E1cB Rate Equation
  • 4.11 E1cB Eliminations in Context
  • 4.12 E1-E2 -E1cB Spectrum
  • 4.13 Pyrolytic or Thermal Eliminations
  • 4.14 Summary
  • Problems
  • Objective Type Questions
  • Chapter 5: Addition Reactions
  • 5.1 Introduction
  • 5.2 Electrophilic Addition of HX and H2 to Alkenes
  • 5.2.1 Experimental evidence
  • 5.2.2 Product Analysis
  • 5.3 M echanism of Electrophilic Addition
  • 5 .3.1 Halonium Ions.
  • 5.3.2 Stereochemistry
  • 5.3.3 Stereospecific Electrophilic Addition to Stereoisomeric Alkenes
  • 5.3.4 Regioselectivity in Unsymmetrical Electrophilic Addition to Alkenes
  • 5.4 Acid-catalyzed Hydrolysis of Vinyl Ethers
  • 5.5 Other Electrophilic Addition Reactions to Alkenes
  • 5.5.1 Epoxidation
  • 5.5.2 Sharpless Asymmetric Epoxidation
  • 5.5.3 1,2-bis Hydroxylation
  • 5.5.4 Hydroboration-oxidation
  • 5.6 Electrophilic Addition to Alkynes
  • 5.7 Nucleophilic Addition to Alkenes and Alkynes
  • 5.7.1 Alkenes
  • 5.7.2 Alkynes
  • 5.8 Radical Addition to Alkenes
  • 5.9 Diels-Alder Reaction
  • 5.9.1 Solvent in Diels-Alder Reaction
  • 5.9.2 Applications
  • 5.10 Summary
  • Problems
  • Objective Type Questions
  • Chapter 6: Free Radical Reactions
  • 6.1 Introduction
  • 6.1.1 Early Evidence for Existence of Radicals
  • 6.1.2 Detection and Characterization of Radicals
  • 6.2 Structure and Bonding of Radicals
  • 6.3 Thermochemical Data of Radicals
  • 6.4 Generation of Free Radicals
  • 6.5 Radicals in Cars
  • 6.6 Radical Stability
  • 6.7 Reactions of Free Radicals
  • 6.8 Stereochemistry of Radical Substitution Reactions
  • 6.9 Summary
  • Problems
  • Objective Type Questions
  • Chapter 7: Molecular Rearrangements
  • 7.1 Introduction
  • 7.2 Cationic Rearrangements
  • 7.3 Wagner-Meerwein Rearrangement
  • 7.4 Pinacol Rearrangement
  • 7.5 Semipinacol Rearrangements
  • 7.6 Demjanov Rearrangement
  • 7.7 Baeyer-Villiger Oxidation
  • 7.8 Fries Rearrangement
  • 7.9 D ienone-Phenol Rearrangement
  • 7.10 Rearrangement to Electron-deficient Nitrogen
  • 7.10.1 Beckmann Rearrangement
  • 7.11 Hofmann, Curtius, Schmidt and Lossen Rearrangements
  • 7.11.1 Hofmann Rearrangement
  • 7.11.2 Curtius Degradation (Rearrangement)
  • 7.11.3 Schmidt Reaction
  • 7.11.4 Lossen Rearrangement
  • 7.12 Wolff Rearrangement
  • 7.13 Electrophilic Rearrangements
  • 7.13.1 Stevens Rearrangement.
  • 7.13.2 Wittig Rearrangement
  • 7.13.3 Favorskii Rearrangement
  • 7.14 Summary
  • Problems
  • Objective Type Questions
  • Chapter 8: Aromatic Substitution
  • 8.1 Introduction
  • 8.2 Electrophilic Aromatic Substitution (SEAr)
  • 8.2.1 Nitration of Benzene
  • 8.2.2 Halogenation of Benzene
  • 8.2.3 Friedel-Crafts Alkylation
  • 8.2.4 Friedel-Crafts Acylation
  • 8.2.5 Sulphonation of Benzene
  • 8.2.6 Protonation
  • 8.3 Reactivity and Orientation in Electrophilic Aromatic Substitution
  • 8.4 Groups Donating Electrons by Mesomeric Effect
  • 8.5 Groups Withdrawing Electrons by Mesomeric Effect
  • 8.6 Groups Withdrawing Electrons by Inductive Effect
  • 8.7 Groups Donating Electrons by Inductive Effect
  • 8.8 Ortho/Para Ratios
  • 8.9 Effects of Multiple Substitution
  • 8.10 Hammett Equation
  • 8 .11 Nucleophilic Aromatic Substitution
  • 8.11.1 By Addition -Elimination Mechanism (SNAr)
  • 8.11.2 By Elimination-Addition Mechanism
  • 8.12 IPSO Substitution
  • 8.13 Summary
  • Problems
  • Objective Type Questions
  • Chapter 9: Stereochemistry
  • 9.1 Introduction
  • 9.2 Simple Molecules: Hybridization, Conformation and Configuration
  • 9.2.1 Hybridization: Methane
  • 9.2.2 Hybridization: Ethene and Alkenes
  • 9.2.3 Hybridization: Ethyne
  • 9.2.4 Bonding and Anti-bonding Orbitals
  • 9.2.5 Conformation: Ethane
  • 9.2.6 Conformation of propane and n-butane
  • 9.2.7 Cydohexane: Chair Conformation
  • 9.2.8 Cyclohexane: Boat Conformation
  • 9.2.9 inversion of Cyclohexane
  • 9.2.10 Monosubstituted Cyclohexanes
  • 9.2.11 Disubstituted Cydohexanes
  • 9.3 Chiral Molecules
  • 9.3.1 Chirality, Enantiomers and Optical Activity
  • 9.3.2 How to Specify a Configuration
  • 9.3.3 cahn-lngold-Prelog R/S Conventions
  • 9.3.4 Enantiomers and Diastereoisomers
  • 9.3.5 Racemization
  • 9.3.6 Meso Configuration
  • 9.3.7 Erythro/Threo and Syn/Anti Configurations
  • 9.4 Homochiral Molecules.
  • 9.5 Caged Compounds with Two Stereogenic Bridgehead Carbons
  • 9.6 Epimers and Nomenclature of Bicyclic Compounds
  • 9.7 Separation of Enantiomers: Resolution
  • 9.7.1 Mechanical Separation-crystallization Method
  • 9.7.2 Resolution through Formation of Diastereomers
  • 9.7.3 Separation of Enantiomers by Chromatography
  • 9.7.4 Resolution with Enzymes
  • 9.8 Summary
  • Problems
  • Objective Type Questions
  • Chapter 10: Buckminsterfullerene (Soccer Ball, Bucky Ball)
  • 10.1 Introduction
  • 10.2 Synthesis and Isolation of C60
  • 10.3 Reactions of Fullerenes
  • 10.4 Application
  • 10.4.1 Superconductors
  • 10.4.2 HIV Protease Inhibitor
  • 10.4.3 Carbon Nanotubes and Nanowires
  • 10.4.4 Catalysis
  • 10.4.5 Polymerization Reactions
  • 10.4.6 Carbon Chemistry
  • Chapter 11: Pericyclic Reactions
  • 11.1 Introduction
  • 11.2 Electrocyclic Reactions
  • 11.3 Theoretical Explanation
  • 11.4 Conservation of Orbital Symmetry
  • 11.5 Cycloaddition Reactions
  • 11.6 Frontier Molecular Orbital Approach
  • 11.7 Sigmatropic Rearrangements
  • 11.8 Summary
  • Problems
  • Objective Type Questions
  • Chapter 12: Aromaticity
  • 12.1 Introduction
  • 12.2 Concept of Aromaticity
  • 12.3 Anti-aromaticity
  • 12.4 Annulenes
  • 12.5 Aromaticity in Charged Rings
  • 12.6 Homoaromaticity
  • 12.7 Fused-ring Systems
  • 12.8 Aromatic Hydrocarbons
  • 12.9 Heterocyclic Rings
  • 12.10 Summary
  • Problems
  • Objective Type Questions
  • Glossary
  • Index.