Advanced organic chemistry reactions and mechanisms
Advanced Organic Chemistry: Reactions and Mechanisms covers the four types of reactions -- substitution, addition, elimination and rearrangement; the three types of reagents -- nucleophiles, electrophiles and radicals; and the two effects -- electroni
Otros Autores: | |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Delhi :
Dorling Kindersley (India)
[2007]
|
Colección: | Always learning.
|
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009628004906719 |
Tabla de Contenidos:
- Cover
- Preface
- Acknowledgements
- Contents
- Chapter 1: Concept of Acids and Bases
- 1.1 Introduction
- 1.1.1 What Is an Acid or a Base
- 1.1.2 Properties of Acids
- 1.1.3 Properties of Bases
- 1.2 Acidity and Basicity of Molecules
- 1.2.1 Acidity
- 1.2.2 Carbon Acids
- 1.2.3 Nitrogen Acids
- 1.2.4 Organosulphur Oxyacids
- 1.2.5 Basicity
- 1.2.6 Effects Decreasing Electron Density on Nitrogen
- 1.3 Definition of pka
- 1.4 pH Box
- 1.4.1 pka Box
- 1.4.2 pH of Strong Acids and Bases
- 1.4.3 Strong Acids
- 1.4.4 Weak Acids
- 1.4.5 Strong Bases
- 1.4.6 Weak Bases
- 1.4.7 pH of Weak Acids and Bases
- 1.5 Hard and Soft Acids and Bases
- 1.5.1 Lewis Acids and Bases
- 1.5.2 Hard and soft Acids
- 1.5.3 Hard and Soft Bases
- 1.5.4 Hard and Soft Acid-Base Classification
- 1.6 Effect of Structure on Strength of Acids and Bases
- 1.6.1 Field Effect
- 1.6.2 Resonance Effect
- 1.6.3 Periodic Table correlation
- 1.6.4 Statistical Effect
- 1.6.5 Hydrogen-bonding
- 1.6.6 Steric Effect
- 1.6.7 Hybridization
- 1.7 Effects of Medium on Acid and Base Strength
- 1.8 Levelling Effect
- 1.9 Summary
- Problems
- Objective Type Questions
- Chapter 2: Delocalized Chemical Bonding and Electronic Effects
- 2.1 Introduction
- 2.2 Resonance
- 2.3 Resonance Energy
- 2.4 Resonance Effect
- 2.5 Hyperconjugation (Baker-N athan Effect)
- 2.5.1 Negative hyperconjugation
- 2.6 Tautomerism
- 2.6.1 Mechanism of Keto-Enol Interconversion
- 2.6.2 Differences between Tautomerism and Resonance
- 2.7 Nitro-acinitro System
- 2.8 Inductive Effect
- 2.9 Electromeric Effect
- 2.10 Steric Effect
- 2.11 Hydrogen Bonding
- 2.12 Summary
- Problems
- Objective Type Questions
- Chapter 3: Aliphatic Nucleophilic Substitution Reactions
- 3.1 Introduction
- 3.2 Mechanism of SN2 Reaction
- 3.3 Nucleophile in SN2 Reaction.
- 3.4 Leaving Group in SN2 Reaction
- 3.5 Interm olecular versus Intram olecular Reactions
- 3.5.1 Baldwin's Rules
- 3.6 Mechanism of SN1 Reaction
- 3.7 Leaving Group in SN1 Reaction
- 3.8 Nucleophile in SN1 Reaction
- 3.9 Carbocation Rearrangements
- 3.10 Stereochemistry of SN2 and SN1 Reactions
- 3.11 Role of Solvent in SN2 and SN1 Reactions
- 3.12 Solvation Effect
- 3.13 Effect of Solvent on Rate of Reaction
- 3.13.1 Effect of solvent on Rate of SN1 Reaction
- 3.13.2 Effect of Solvent on Rate of SN2 Reaction
- 3.14 Benzylic, Allylic, Vinylic and Aryl Halides
- 3.15 Competition between SN2 and SN1 Reactions
- 3.16 Mixed SN1 and SN2 Mechanism
- 3.17 Neighbouring Group Participation
- 3.18 Summary
- Problems
- Objective Type Questions
- Chapter 4: Elimination Reactions
- 4.1 Introduction
- 4.1.1 Substitution and Elimination
- 4.2 a-Elimination
- 4.2.1 Elimination When Nucleophile Attacks Hydrogen
- 4.2.2 Nucleophile Effects on Elimination and Substitution
- 4.3 E1 and E2 Mechanism s
- 4.4 Orientation of Double Bond
- 4.5 Role of Leaving Group
- 4.5.1 Stereoselective E1 Reactions
- 4.5.2 Regioselective E1 Reactions
- 4.5.3 Anti-periplanar Transition States of E2 Eliminations
- 4.5.4 Stereospecific E2 Eliminations
- 4.6 E2 Eliminations from Cyclohexanes
- 4.7 Regioselectivity of E2 Elim inations
- 4.8 E2 Elimination from Vinyl Halides: How to Make Alkynes
- 4.9 Anion-stabilizing Groups Allow E1cB
- 4.10 E1cB Rate Equation
- 4.11 E1cB Eliminations in Context
- 4.12 E1-E2 -E1cB Spectrum
- 4.13 Pyrolytic or Thermal Eliminations
- 4.14 Summary
- Problems
- Objective Type Questions
- Chapter 5: Addition Reactions
- 5.1 Introduction
- 5.2 Electrophilic Addition of HX and H2 to Alkenes
- 5.2.1 Experimental evidence
- 5.2.2 Product Analysis
- 5.3 M echanism of Electrophilic Addition
- 5 .3.1 Halonium Ions.
- 5.3.2 Stereochemistry
- 5.3.3 Stereospecific Electrophilic Addition to Stereoisomeric Alkenes
- 5.3.4 Regioselectivity in Unsymmetrical Electrophilic Addition to Alkenes
- 5.4 Acid-catalyzed Hydrolysis of Vinyl Ethers
- 5.5 Other Electrophilic Addition Reactions to Alkenes
- 5.5.1 Epoxidation
- 5.5.2 Sharpless Asymmetric Epoxidation
- 5.5.3 1,2-bis Hydroxylation
- 5.5.4 Hydroboration-oxidation
- 5.6 Electrophilic Addition to Alkynes
- 5.7 Nucleophilic Addition to Alkenes and Alkynes
- 5.7.1 Alkenes
- 5.7.2 Alkynes
- 5.8 Radical Addition to Alkenes
- 5.9 Diels-Alder Reaction
- 5.9.1 Solvent in Diels-Alder Reaction
- 5.9.2 Applications
- 5.10 Summary
- Problems
- Objective Type Questions
- Chapter 6: Free Radical Reactions
- 6.1 Introduction
- 6.1.1 Early Evidence for Existence of Radicals
- 6.1.2 Detection and Characterization of Radicals
- 6.2 Structure and Bonding of Radicals
- 6.3 Thermochemical Data of Radicals
- 6.4 Generation of Free Radicals
- 6.5 Radicals in Cars
- 6.6 Radical Stability
- 6.7 Reactions of Free Radicals
- 6.8 Stereochemistry of Radical Substitution Reactions
- 6.9 Summary
- Problems
- Objective Type Questions
- Chapter 7: Molecular Rearrangements
- 7.1 Introduction
- 7.2 Cationic Rearrangements
- 7.3 Wagner-Meerwein Rearrangement
- 7.4 Pinacol Rearrangement
- 7.5 Semipinacol Rearrangements
- 7.6 Demjanov Rearrangement
- 7.7 Baeyer-Villiger Oxidation
- 7.8 Fries Rearrangement
- 7.9 D ienone-Phenol Rearrangement
- 7.10 Rearrangement to Electron-deficient Nitrogen
- 7.10.1 Beckmann Rearrangement
- 7.11 Hofmann, Curtius, Schmidt and Lossen Rearrangements
- 7.11.1 Hofmann Rearrangement
- 7.11.2 Curtius Degradation (Rearrangement)
- 7.11.3 Schmidt Reaction
- 7.11.4 Lossen Rearrangement
- 7.12 Wolff Rearrangement
- 7.13 Electrophilic Rearrangements
- 7.13.1 Stevens Rearrangement.
- 7.13.2 Wittig Rearrangement
- 7.13.3 Favorskii Rearrangement
- 7.14 Summary
- Problems
- Objective Type Questions
- Chapter 8: Aromatic Substitution
- 8.1 Introduction
- 8.2 Electrophilic Aromatic Substitution (SEAr)
- 8.2.1 Nitration of Benzene
- 8.2.2 Halogenation of Benzene
- 8.2.3 Friedel-Crafts Alkylation
- 8.2.4 Friedel-Crafts Acylation
- 8.2.5 Sulphonation of Benzene
- 8.2.6 Protonation
- 8.3 Reactivity and Orientation in Electrophilic Aromatic Substitution
- 8.4 Groups Donating Electrons by Mesomeric Effect
- 8.5 Groups Withdrawing Electrons by Mesomeric Effect
- 8.6 Groups Withdrawing Electrons by Inductive Effect
- 8.7 Groups Donating Electrons by Inductive Effect
- 8.8 Ortho/Para Ratios
- 8.9 Effects of Multiple Substitution
- 8.10 Hammett Equation
- 8 .11 Nucleophilic Aromatic Substitution
- 8.11.1 By Addition -Elimination Mechanism (SNAr)
- 8.11.2 By Elimination-Addition Mechanism
- 8.12 IPSO Substitution
- 8.13 Summary
- Problems
- Objective Type Questions
- Chapter 9: Stereochemistry
- 9.1 Introduction
- 9.2 Simple Molecules: Hybridization, Conformation and Configuration
- 9.2.1 Hybridization: Methane
- 9.2.2 Hybridization: Ethene and Alkenes
- 9.2.3 Hybridization: Ethyne
- 9.2.4 Bonding and Anti-bonding Orbitals
- 9.2.5 Conformation: Ethane
- 9.2.6 Conformation of propane and n-butane
- 9.2.7 Cydohexane: Chair Conformation
- 9.2.8 Cyclohexane: Boat Conformation
- 9.2.9 inversion of Cyclohexane
- 9.2.10 Monosubstituted Cyclohexanes
- 9.2.11 Disubstituted Cydohexanes
- 9.3 Chiral Molecules
- 9.3.1 Chirality, Enantiomers and Optical Activity
- 9.3.2 How to Specify a Configuration
- 9.3.3 cahn-lngold-Prelog R/S Conventions
- 9.3.4 Enantiomers and Diastereoisomers
- 9.3.5 Racemization
- 9.3.6 Meso Configuration
- 9.3.7 Erythro/Threo and Syn/Anti Configurations
- 9.4 Homochiral Molecules.
- 9.5 Caged Compounds with Two Stereogenic Bridgehead Carbons
- 9.6 Epimers and Nomenclature of Bicyclic Compounds
- 9.7 Separation of Enantiomers: Resolution
- 9.7.1 Mechanical Separation-crystallization Method
- 9.7.2 Resolution through Formation of Diastereomers
- 9.7.3 Separation of Enantiomers by Chromatography
- 9.7.4 Resolution with Enzymes
- 9.8 Summary
- Problems
- Objective Type Questions
- Chapter 10: Buckminsterfullerene (Soccer Ball, Bucky Ball)
- 10.1 Introduction
- 10.2 Synthesis and Isolation of C60
- 10.3 Reactions of Fullerenes
- 10.4 Application
- 10.4.1 Superconductors
- 10.4.2 HIV Protease Inhibitor
- 10.4.3 Carbon Nanotubes and Nanowires
- 10.4.4 Catalysis
- 10.4.5 Polymerization Reactions
- 10.4.6 Carbon Chemistry
- Chapter 11: Pericyclic Reactions
- 11.1 Introduction
- 11.2 Electrocyclic Reactions
- 11.3 Theoretical Explanation
- 11.4 Conservation of Orbital Symmetry
- 11.5 Cycloaddition Reactions
- 11.6 Frontier Molecular Orbital Approach
- 11.7 Sigmatropic Rearrangements
- 11.8 Summary
- Problems
- Objective Type Questions
- Chapter 12: Aromaticity
- 12.1 Introduction
- 12.2 Concept of Aromaticity
- 12.3 Anti-aromaticity
- 12.4 Annulenes
- 12.5 Aromaticity in Charged Rings
- 12.6 Homoaromaticity
- 12.7 Fused-ring Systems
- 12.8 Aromatic Hydrocarbons
- 12.9 Heterocyclic Rings
- 12.10 Summary
- Problems
- Objective Type Questions
- Glossary
- Index.