Modeling, estimation and optimal filtration in signal processing

The purpose of this book is to provide graduate students and practitioners with traditional methods and more recent results for model-based approaches in signal processing.Firstly, discrete-time linear models such as AR, MA and ARMA models, their properties and their limitations are introduced. In a...

Descripción completa

Detalles Bibliográficos
Autor principal: Najim, Mohamed (-)
Formato: Libro electrónico
Idioma:Inglés
Publicado: London : Hoboken, NJ : ISTE ; J. Wiley & Sons 2008.
Edición:1st edition
Colección:ISTE
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009627844006719
Tabla de Contenidos:
  • Modeling, Estimation and Optimal Filtering in Signal Processing; Table of Contents; Preface; Chapter 1. Parametric Models; 1.1. Introduction; 1.2. Discrete linear models; 1.2.1. The moving average (MA) model; 1.2.2. The autoregressive (AR) model; 1.3. Observations on stability, stationarity and invertibility; 1.3.1. AR model case; 1.3.2. ARMA model case; 1.4. The AR model or the ARMA model?; 1.5. Sinusoidal models; 1.5.1. The relevance of the sinusoidal model; 1.5.2. Sinusoidal models; 1.6. State space representations; 1.6.1. Definitions
  • 1.6.2. State space representations based on differential equation representation1.6.3. Resolution of the state equations; 1.6.4. State equations for a discrete-time system; 1.6.5. Some properties of systems described in the state space; 1.6.5.1. Introduction; 1.6.5.2. Observability; 1.6.5.3. Controllability; 1.6.5.4. Plurality of the state space representation of the system; 1.6.6. Case 1: state space representation of AR processes; 1.6.7. Case 2: state space representation of MA processes; 1.6.8. Case 3: state space representation of ARMA processes
  • 1.6.9. Case 4: state space representation of a noisy process1.6.9.1. An AR process disturbed by a white noise; 1.6.9.2. AR process disturbed by colored noise itself modeled by another AR process; 1.6.9.3. AR process disturbed by colored noise itself modeled by a MA process; 1.7. Conclusion; 1.8. References; Chapter 2. Least Squares Estimation of Parameters of Linear Models; 2.1. Introduction; 2.2. Least squares estimation of AR parameters; 2.2.1. Determination or estimation of parameters?; 2.2.2. Recursive estimation of parameters; 2.2.3. Implementation of the least squares algorithm
  • 2.2.4. The least squares method with weighting factor2.2.5. A recursive weighted least squares estimator; 2.2.6. Observations on some variants of the least squares method; 2.2.6.1. The autocorrelation method; 2.2.6.2. Levinson's algorithm; 2.2.6.3. The Durbin-Levinson algorithm; 2.2.6.4. Lattice filters; 2.2.6.5. The covariance method; 2.2.6.6. Relation between the covariance method and the least squares method; 2.2.6.7. Effect of a white additive noise on the estimation of AR parameters; 2.2.6.8. A method for alleviating the bias on the estimation of the AR parameters
  • 2.2.7. Generalized least squares method2.2.8. The extended least squares method; 2.3. Selecting the order of the models; 2.4. References; Chapter 3. Matched and Wiener Filters; 3.1. Introduction; 3.2. Matched filter; 3.2.1. Introduction; 3.2.2. Matched filter for the case of white noise; 3.2.3. Matched filter for the case of colored noise; 3.2.3.1. Formulation of problem; 3.2.3.2. Physically unrealizable matched filter; 3.2.3.3. A matched filter solution using whitening techniques; 3.3. The Wiener filter; 3.3.1. Introduction; 3.3.2. Formulation of problem; 3.3.3. The Wiener-Hopf equation
  • 3.3.4. Error calculation in a continuous physically non-realizable Wiener filter