Fundamentals of digital image processing

Fundamentals of Digital Image Processing clearly discusses the five fundamental aspects of digital image processing namely, image enhancement, transformation, segmentation, compression and restoration. Presented in a simple and lucid manner, the book aims to provide the reader a sound and firm theor...

Descripción completa

Detalles Bibliográficos
Otros Autores: Annadurai, S. Author (author), Shanmugalakshmi, R. Contributor (contributor)
Formato: Libro electrónico
Idioma:Inglés
Publicado: [Place of publication not identified] Pearson 2006
Edición:1st edition
Colección:Always learning.
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009627773306719
Tabla de Contenidos:
  • Cover
  • Preface
  • Acknowledgement
  • About the Authors
  • Contents
  • Chapter 1: Introduction to Digital Image Processing
  • 1.1 Introduction
  • 1.2 Steps in Image Processing
  • 1.3 Building Blocks of a Digital Image Processing System
  • 1.3.1 Image Acquisition
  • 1.3.2 Storage
  • 1.3.3 Processing
  • 1.3.4 Display and Communication Interface
  • Summary
  • Review Questions
  • Chapter 2: Digital Image Representation
  • 2.1 Introduction
  • 2.2 Digital Image Representation
  • 2.3 Sampling and Quantization
  • 2.4 Basic Relationship Between Pixels
  • 2.4.1 Neighbors and Connectivity
  • 2.4.2 Distance Measure
  • Summary
  • Review Questions
  • Chapter 3: Image Transforms
  • 3.1 Introduction
  • 3.2 Fourier Transform
  • 3.3 Discrete Fourier Transform
  • 3.4 Properties of Fourier Transform
  • 3.4.1 Separability
  • 3.4.2 Translation
  • 3.4.3 Periodicity and Conjugate Symmetry
  • 3.4.4 Rotation
  • 3.4.5 Distributivity and Scaling
  • 3.4.6 Average Value
  • 3.4.7 Laplacian
  • 3.4.8 Convolution and Correlation
  • 3.5 Fast Fourier Transform
  • 3.5.1 Fast Fourier Transform Algorithm
  • 3.5.2 The Inverse FFT
  • 3.6 Discrete Cosine Transform
  • 3.6.1 Properties of Cosine Transform
  • 3.7 Walsh Transform
  • 3.8 Hadamard Transform
  • 3.9 The Haar Transform
  • 3.10 The Slant Transform
  • 3.11 The Hotelling Transform
  • Summary
  • Review Questions
  • Chapter 4: Image Enhancement
  • 4.1 Introduction
  • 4.2 Spatial Domain and Frequency Domain Approaches
  • 4.2.1 Frequency Domain Techniques
  • 4.3 Spatial Domain Techniques
  • 4.3.1 Negative of an Image
  • 4.3.2 Contrast Stretching
  • 4.3.3 Gray Level Slicing
  • 4.3.4 Bit Plane Slicing
  • 4.3.5 Histogram and Histogram Equalization
  • 4.3.6 Histogram Specifications
  • 4.3.7 Local Enhancement Technique
  • 4.3.8 Image Subtraction
  • 4.3.9 Image Average
  • 4.4 Spatial Filtering
  • 4.4.1 Low-Pass Spatial Filters.
  • 4.4.2 Median Filtering
  • 4.4.3 High-Pass Spatial Filters
  • 4.4.4 High-Boost Filter
  • 4.4.5 Derivative Filters
  • 4.5 Frequency Domain
  • 4.5.1 Ideal Low-Pass Filter
  • 4.5.2 Butterworth Low-Pass Filter
  • 4.5.3 High-Pass Filter
  • 4.5.4 Homomorphic Filtering
  • 4.5.5 Pseudo Color Image
  • 4.6 Gray Level to Color Transformation
  • 4.6.1 Filter Approach for Color Coding
  • Summary
  • Review Questions
  • Chapter 5: Image Compression
  • 5.1 Introduction
  • 5.2 Coding Redundancy
  • 5.3 Inter-Pixel Redundancy
  • 5.4 Psycho-Visual Redundancy
  • 5.5 Image Compression Models
  • 5.6 The Source Encoder and Decoder
  • 5.7 The Channel Encoder and Decoder
  • 5.8 Information Theory
  • 5.8.1 Information
  • 5.8.2 Entropy Coding
  • 5.9 Classification
  • 5.10 Huffman Coding
  • 5.10.1 Arithmetic Coding
  • 5.10.2 Lossless Predictive Coding
  • 5.11 Lossy Compression Techniques
  • 5.11.1 Lossy Predictive Compression Approach
  • 5.11.2 Transform Coding
  • 5.11.3 Subimage Selection
  • 5.11.4 Coefficients Selection
  • 5.12 Threshold Coding
  • 5.13 Vector Quantization
  • 5.14 Image Compression Standard (JPEG)
  • 5.15 Image Compression Using Neural Networks
  • 5.15.1 Multilayer Perceptron Network for Image Compression
  • 5.15.2 Vector Quantization Using Neural Networks
  • 5.15.3 Self-Organizing Feature Map
  • Summary
  • Review Questions
  • Chapter 6: Image Segmentation
  • 6.1 Introduction
  • 6.2 Detection of Isolated Points
  • 6.3 Line Detection
  • 6.4 Edge Detection
  • 6.4.1 Gradient Operators
  • 6.4.2 Laplacian Operator
  • 6.5 Edge Linking and Boundary Detection
  • 6.5.1 Local Processing
  • 6.5.2 Global Processing Using Graph Theoretic Approach
  • 6.6 Region-Oriented Segmentation
  • 6.6.1 Basic Rules for Segmentation
  • 6.6.2 Region Growing by Pixel Aggregation
  • 6.6.3 Region Splitting and Merging
  • 6.7 Segmentation Using Threshold
  • 6.7.1 Fundamental Concepts.
  • 6.7.2 Optimal Thresholding
  • 6.7.3 Threshold Selection Based on Boundary Characteristics
  • 6.7.4 Use of Motion in Segmentation
  • 6.8 Accumulative Difference Image
  • Summary
  • Review Questions
  • Chapter 7: Image Restoration
  • 7.1 Introduction
  • 7.2 Degradation Model
  • 7.3 Degradation Model for Continuous Functions
  • 7.4 Discrete Degradation Model
  • 7.5 Estimation of Degradation Function
  • 7.6 Estimation by Experimentation
  • 7.7 Estimation by Modeling
  • 7.8 Inverse Filtering Approach
  • 7.9 Least Mean Square Filter
  • 7.10 Interactive Restoration
  • 7.11 Constrained Least Squares Restoration
  • 7.11.1 Geometric Transformations
  • 7.11.2 Spatial Transformations
  • 7.11.3 Gray Level Interpolation
  • Summary
  • Review Questions
  • Chapter 8: Image Representation and Description
  • 8.1 Introduction
  • 8.2 Boundary Representation Using Chain Codes
  • 8.3 Boundary Representation Using Line Segments
  • 8.4 Boundary Representation Using Signature
  • 8.5 Shape Number
  • 8.6 Fourier Descriptors
  • 8.7 Moments
  • 8.8 Region Representation
  • 8.8.1 Run-Length Codes
  • 8.8.2 Quad Tree
  • 8.8.3 Skeletons
  • 8.9 Regional Descriptors
  • 8.10 Topological Descriptors
  • 8.11 Texture
  • 8.11.1 Statistical Approach
  • 8.11.2 Structural Approach
  • 8.12 Relational Descriptors
  • Summary
  • Review Questions
  • Chapter 9: Pattern Classification Methods
  • 9.1 Introduction
  • 9.2 Statistical Pattern Classification Methods
  • 9.2.1 Supervised and Unsupervised Learning Methods
  • 9.2.2 Parametric Approaches
  • 9.2.3 Nonparametric Approaches
  • 9.2.4 Deterministic Trainable Classification Algorithms
  • 9.3 Artificial Intelligence Approach in Pattern Classification
  • 9.4 ANN Approaches in Pattern Classification
  • 9.4.1 Backpropagation Training Algorithm for MLP Classifier
  • 9.4.2 Experimentation With MLP Classifier
  • 9.4.3 Classification of Mechanical Components.
  • 9.4.4 Prediction of Subsidence in Coal
  • 9.4.5 Kohonen's Self-Organizing Map (SOM) Network
  • 9.5 Supervised Feedforward Fuzzy Neural Network
  • 9.5.1 Fuzzy Neuron
  • 9.5.2 Structure of the Fuzzy Neural Classifier
  • 9.5.3 Dynamically Organizing SFFNN Learning Algorithm
  • 9.5.4 Analysis of the SFFNN Classifier
  • 9.5.5 Experimental Results
  • 9.5.6 Simulation
  • 9.6 Syntactic Pattern Recognition
  • 9.6.1 Formal Language Theory
  • 9.7 Types of Grammar
  • 9.8 Syntactic Recognition Problem Using Formal Language
  • 9.9 Image Knowledge Base
  • 9.9.1 Frames
  • 9.9.2 Predicate Logic
  • Summary
  • Review Questions
  • Illustrations
  • Bibliography
  • Index.