Fundamentals of digital image processing
Fundamentals of Digital Image Processing clearly discusses the five fundamental aspects of digital image processing namely, image enhancement, transformation, segmentation, compression and restoration. Presented in a simple and lucid manner, the book aims to provide the reader a sound and firm theor...
Otros Autores: | , |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
[Place of publication not identified]
Pearson
2006
|
Edición: | 1st edition |
Colección: | Always learning.
|
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009627773306719 |
Tabla de Contenidos:
- Cover
- Preface
- Acknowledgement
- About the Authors
- Contents
- Chapter 1: Introduction to Digital Image Processing
- 1.1 Introduction
- 1.2 Steps in Image Processing
- 1.3 Building Blocks of a Digital Image Processing System
- 1.3.1 Image Acquisition
- 1.3.2 Storage
- 1.3.3 Processing
- 1.3.4 Display and Communication Interface
- Summary
- Review Questions
- Chapter 2: Digital Image Representation
- 2.1 Introduction
- 2.2 Digital Image Representation
- 2.3 Sampling and Quantization
- 2.4 Basic Relationship Between Pixels
- 2.4.1 Neighbors and Connectivity
- 2.4.2 Distance Measure
- Summary
- Review Questions
- Chapter 3: Image Transforms
- 3.1 Introduction
- 3.2 Fourier Transform
- 3.3 Discrete Fourier Transform
- 3.4 Properties of Fourier Transform
- 3.4.1 Separability
- 3.4.2 Translation
- 3.4.3 Periodicity and Conjugate Symmetry
- 3.4.4 Rotation
- 3.4.5 Distributivity and Scaling
- 3.4.6 Average Value
- 3.4.7 Laplacian
- 3.4.8 Convolution and Correlation
- 3.5 Fast Fourier Transform
- 3.5.1 Fast Fourier Transform Algorithm
- 3.5.2 The Inverse FFT
- 3.6 Discrete Cosine Transform
- 3.6.1 Properties of Cosine Transform
- 3.7 Walsh Transform
- 3.8 Hadamard Transform
- 3.9 The Haar Transform
- 3.10 The Slant Transform
- 3.11 The Hotelling Transform
- Summary
- Review Questions
- Chapter 4: Image Enhancement
- 4.1 Introduction
- 4.2 Spatial Domain and Frequency Domain Approaches
- 4.2.1 Frequency Domain Techniques
- 4.3 Spatial Domain Techniques
- 4.3.1 Negative of an Image
- 4.3.2 Contrast Stretching
- 4.3.3 Gray Level Slicing
- 4.3.4 Bit Plane Slicing
- 4.3.5 Histogram and Histogram Equalization
- 4.3.6 Histogram Specifications
- 4.3.7 Local Enhancement Technique
- 4.3.8 Image Subtraction
- 4.3.9 Image Average
- 4.4 Spatial Filtering
- 4.4.1 Low-Pass Spatial Filters.
- 4.4.2 Median Filtering
- 4.4.3 High-Pass Spatial Filters
- 4.4.4 High-Boost Filter
- 4.4.5 Derivative Filters
- 4.5 Frequency Domain
- 4.5.1 Ideal Low-Pass Filter
- 4.5.2 Butterworth Low-Pass Filter
- 4.5.3 High-Pass Filter
- 4.5.4 Homomorphic Filtering
- 4.5.5 Pseudo Color Image
- 4.6 Gray Level to Color Transformation
- 4.6.1 Filter Approach for Color Coding
- Summary
- Review Questions
- Chapter 5: Image Compression
- 5.1 Introduction
- 5.2 Coding Redundancy
- 5.3 Inter-Pixel Redundancy
- 5.4 Psycho-Visual Redundancy
- 5.5 Image Compression Models
- 5.6 The Source Encoder and Decoder
- 5.7 The Channel Encoder and Decoder
- 5.8 Information Theory
- 5.8.1 Information
- 5.8.2 Entropy Coding
- 5.9 Classification
- 5.10 Huffman Coding
- 5.10.1 Arithmetic Coding
- 5.10.2 Lossless Predictive Coding
- 5.11 Lossy Compression Techniques
- 5.11.1 Lossy Predictive Compression Approach
- 5.11.2 Transform Coding
- 5.11.3 Subimage Selection
- 5.11.4 Coefficients Selection
- 5.12 Threshold Coding
- 5.13 Vector Quantization
- 5.14 Image Compression Standard (JPEG)
- 5.15 Image Compression Using Neural Networks
- 5.15.1 Multilayer Perceptron Network for Image Compression
- 5.15.2 Vector Quantization Using Neural Networks
- 5.15.3 Self-Organizing Feature Map
- Summary
- Review Questions
- Chapter 6: Image Segmentation
- 6.1 Introduction
- 6.2 Detection of Isolated Points
- 6.3 Line Detection
- 6.4 Edge Detection
- 6.4.1 Gradient Operators
- 6.4.2 Laplacian Operator
- 6.5 Edge Linking and Boundary Detection
- 6.5.1 Local Processing
- 6.5.2 Global Processing Using Graph Theoretic Approach
- 6.6 Region-Oriented Segmentation
- 6.6.1 Basic Rules for Segmentation
- 6.6.2 Region Growing by Pixel Aggregation
- 6.6.3 Region Splitting and Merging
- 6.7 Segmentation Using Threshold
- 6.7.1 Fundamental Concepts.
- 6.7.2 Optimal Thresholding
- 6.7.3 Threshold Selection Based on Boundary Characteristics
- 6.7.4 Use of Motion in Segmentation
- 6.8 Accumulative Difference Image
- Summary
- Review Questions
- Chapter 7: Image Restoration
- 7.1 Introduction
- 7.2 Degradation Model
- 7.3 Degradation Model for Continuous Functions
- 7.4 Discrete Degradation Model
- 7.5 Estimation of Degradation Function
- 7.6 Estimation by Experimentation
- 7.7 Estimation by Modeling
- 7.8 Inverse Filtering Approach
- 7.9 Least Mean Square Filter
- 7.10 Interactive Restoration
- 7.11 Constrained Least Squares Restoration
- 7.11.1 Geometric Transformations
- 7.11.2 Spatial Transformations
- 7.11.3 Gray Level Interpolation
- Summary
- Review Questions
- Chapter 8: Image Representation and Description
- 8.1 Introduction
- 8.2 Boundary Representation Using Chain Codes
- 8.3 Boundary Representation Using Line Segments
- 8.4 Boundary Representation Using Signature
- 8.5 Shape Number
- 8.6 Fourier Descriptors
- 8.7 Moments
- 8.8 Region Representation
- 8.8.1 Run-Length Codes
- 8.8.2 Quad Tree
- 8.8.3 Skeletons
- 8.9 Regional Descriptors
- 8.10 Topological Descriptors
- 8.11 Texture
- 8.11.1 Statistical Approach
- 8.11.2 Structural Approach
- 8.12 Relational Descriptors
- Summary
- Review Questions
- Chapter 9: Pattern Classification Methods
- 9.1 Introduction
- 9.2 Statistical Pattern Classification Methods
- 9.2.1 Supervised and Unsupervised Learning Methods
- 9.2.2 Parametric Approaches
- 9.2.3 Nonparametric Approaches
- 9.2.4 Deterministic Trainable Classification Algorithms
- 9.3 Artificial Intelligence Approach in Pattern Classification
- 9.4 ANN Approaches in Pattern Classification
- 9.4.1 Backpropagation Training Algorithm for MLP Classifier
- 9.4.2 Experimentation With MLP Classifier
- 9.4.3 Classification of Mechanical Components.
- 9.4.4 Prediction of Subsidence in Coal
- 9.4.5 Kohonen's Self-Organizing Map (SOM) Network
- 9.5 Supervised Feedforward Fuzzy Neural Network
- 9.5.1 Fuzzy Neuron
- 9.5.2 Structure of the Fuzzy Neural Classifier
- 9.5.3 Dynamically Organizing SFFNN Learning Algorithm
- 9.5.4 Analysis of the SFFNN Classifier
- 9.5.5 Experimental Results
- 9.5.6 Simulation
- 9.6 Syntactic Pattern Recognition
- 9.6.1 Formal Language Theory
- 9.7 Types of Grammar
- 9.8 Syntactic Recognition Problem Using Formal Language
- 9.9 Image Knowledge Base
- 9.9.1 Frames
- 9.9.2 Predicate Logic
- Summary
- Review Questions
- Illustrations
- Bibliography
- Index.