A text book of engineering physics

Written in a lucid style, this book assimilates the best practices of conceptual pedagogy, dealing at length with various topics such as crystallography, principles of quantum mechanics, free electron theory of metals, dielectric and magnetic properties, semiconductors, superconductivity, lasers, ho...

Descripción completa

Detalles Bibliográficos
Otros Autores: Naidu, S. Mani Author (author)
Formato: Libro electrónico
Idioma:Inglés
Publicado: [Place of publication not identified] Pearson 2009
Edición:1st edition
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009627767006719
Tabla de Contenidos:
  • Cover
  • Contents
  • Foreword
  • Preface
  • Acknowledgements
  • Road Map to the Syllabus
  • Road Map to the Syllabus
  • Chapter 1: Bonding in Solids
  • 1.1 Different types of bonding in solids
  • 1.2 Cohesive energy and estimation of cohesive Energy of ionic solids
  • 1.3. Estimation of cohesive energy of NaCl molecule in a solid
  • 1.4 Madelung constant
  • Formulae
  • Solved Problems
  • Multiple Choice Questions
  • Answers
  • Review Questions
  • Chapter 2: Crystal Structures
  • 2.1 Introduction
  • Distinction between crystalline and amorphous solids
  • 2.2 Space lattice (or) crystal lattice
  • 2.3 The basis and crystal structure
  • 2.4 Unit cell and lattice parameters
  • 2.5 Crystal systems and Bravais lattices
  • 2.6 Structure and packing fractions of simple cubic [SC] structure
  • 2.7 Structure and packing fractions of body-centred cubic structure [BCC]
  • 2.8 Structure and packing fractions of face-centred cubic [FCC] structure
  • 2.9 Diamond cubic structure
  • 2.10 NaCl crystal structure
  • 2.11 Caesium chloride [CsCl] structure
  • 2.12 Zinc sulphide [ZnS] structure
  • 2.13 Stacking sequence in metallic crystals
  • 2.14 Calculation of lattice constant
  • Solved Problems
  • Multiple Choice Questions
  • Answers
  • Review Questions
  • Chapter 3: Crystal Planes, X-ray Diffraction and Defects in Solids
  • 3.1 Crystal planes, directions and Miller indices
  • 3.2 Distance of separation between successive hkl planes
  • 3.3 Imperfections in crystals
  • 3.4 Energy for the formation of a vacancy and number of vacancies - at equilibrium concentration
  • 3.5 Diffraction of X-rays by crystal planes and Bragg's law
  • 3.6 Powder method
  • 3.7 Laue method
  • Formulae
  • Solved Problems
  • Multiple Choice Questions
  • Answers
  • Review Questions
  • Chapter 4: Principles of Quantum Mechanics
  • 4.1 Waves and particles - de Broglie hypothesis - Matter waves.
  • Matter waves
  • Properties of matter waves
  • 4.2 Relativistic correction
  • 4.3 Planck's quantum theory of black body radiation
  • 4.4 Experimental study of matter waves
  • 4.5 Schrödinger's time-independent wave equation
  • 4.6 Heisenberg uncertainty principle
  • 4.7 Physical significance of the wave function
  • 4.8 Particle in a potential box
  • (a) Particle in a one-dimensional box [or one dimensional potential well]
  • (b) Particle in a rectangular three-dimensional box
  • Formulae
  • Solved Problems
  • Multiple Choice Questions
  • Answers
  • Review Questions
  • Chapter 5: Electron Theory of Metals
  • 5.1 Introduction
  • 5.2 Classical free electron theory of metals
  • To study electrical conductivity
  • 5.3 Relaxation time, mean free path, mean collision time and drift velocity
  • 5.4 Fermi-Dirac distribution
  • 5.5 Quantum free electron theory of electrical conduction
  • 5.6 Sources of electrical resistance
  • 5.7 Band theory of solids
  • (a) Introduction
  • (b) Kronig-Penney model - origin of energy bands
  • 5.8 Bloch theorem
  • 5.9 Origin of energy bands formation in solids
  • 5.10 Velocity and effective mass of an electron
  • Effective mass of an electron
  • 5.11 Distinction between metals, semiconductors and insulators
  • Formulae
  • Solved Problems
  • Multiple Choice Questions
  • Answers
  • Review Questions
  • Chapter 6: Dielectric Properties
  • 6.1 Introduction
  • 6.2 Dielectric constant
  • 6.3 Internal or local field
  • 6.4 Clausius-Mosotti relation
  • 6.5 Orientational, ionic and electronic polarizations
  • (a) Dipolar or orientational polarization
  • (b) Ionic polarization
  • (c) Electronic polarization
  • 6.6 Frequency dependence of polarizability: (Dielectrics in alternating fields)
  • 6.7 Piezoelectricity
  • 6.8 Ferroelectricity
  • 6.9 Frequency dependence of dielectric constant
  • Orientational polarization
  • Ionic polarization.
  • Electronic polarization
  • 6.10 Important requirements of insulators
  • (a) Electrical requirements
  • (b) Thermal requirements
  • (c) Mechanical requirements
  • (d) Chemical requirements
  • Formulae
  • Solved Problems
  • Multiple Choice Questions
  • Answers
  • Review Questions
  • Chapter 7: Magnetic Properties
  • 7.1 Magnetic permeability
  • 7.2 Magnetization (M )
  • 7.3 Origin of magnetic moment-Bohr magneton-electron spin
  • (i) Magnetic moment due to orbital motion of electrons and orbital angular momentum
  • (ii) Magnetic moment due to spin of the electrons
  • (iii) Magnetic moment due to nuclear spin
  • 7.4 Classification of magnetic materials
  • (i) Diamagnetic material
  • (ii) Paramagnetic materials
  • (iii) Ferromagnetic materials
  • (iv) Anti-ferromagnetic materials
  • (v) Ferrimagnetic materials [Ferrites]
  • 7.5 Classical theory of diamagnetism [Langevin theory]
  • 7.6 Theory of paramagnetism
  • 7.7 Domain theory of ferromagnetism
  • Effect of temperature
  • Experimental evidences for domain structure
  • Origin of [Ferromagnetic] domains
  • Explanation for origin of domains
  • 7.8 Hysteresis curve
  • 7.9 Anti-ferromagnetic substances
  • 7.10 Ferrimagnetic substances [Ferrites]
  • 7.11 Soft and hard magnetic materials
  • (a) Soft magnetic materials
  • (b) Hard magnetic materials
  • Comparison between soft and hard magnetic materials
  • 7.12 Applications of ferrites
  • Formulae
  • Solved Problems
  • Multiple Choice Questions
  • Answers
  • Review Questions
  • Chapter 8: Semiconductors
  • 8.1 Introduction
  • 8.2 Intrinsic semiconductors-carrier concentration
  • Electron concentration
  • For hole concentration
  • To evaluate Fermi energy
  • To find intrinsic concentration (ni )
  • 8.3 Electrical conductivity of a semiconductor
  • To find energy gap of a semiconductor
  • Increase of temperature to double the conductivity.
  • 8.4 Extrinsic semiconductors
  • 8.5 Carrier concentration in extrinsic semiconductors
  • 8.6 Minority carrier life time
  • 8.7 Drift and diffusion currents
  • (a) Drift current
  • (b) Diffusion current
  • 8.8 Einstein's relations
  • 8.9 Continuity equation
  • 8.10 Hall effect
  • 8.11 Direct and indirect band gap semiconductors
  • 8.12 Formation of p-n junction
  • 8.13 Energy band diagram of p-n diode
  • 8.14 Diode equation
  • 8.15 p-n junction biasing
  • 8.16 V-I characteristics of p-n diode
  • 8.17 p-n diode rectifier
  • 8.18 Light emitting diode [LED]
  • 8.19 Liquid crystal display (LCD)
  • 8.20 Photodiodes
  • Formulae
  • Solved Problems
  • Multiple Choice Questions
  • Answers
  • Review Questions
  • Chapter 9: Superconductivity
  • 9.1 Introduction
  • 9.2 General features of superconductors
  • 9.3 Type-I and Type-II superconductors
  • 9.4 Penetration depth
  • 9.5 Flux quantization
  • 9.6 Quantum tunnelling
  • 9.7 Josephson's effect
  • 9.8 BCS theory
  • Description
  • Coherent length
  • BCS ground state
  • 9.9 Applications of superconductivity
  • 9.9.1 Magnetic applications
  • 9.9.2 Electrical applications
  • 9.9.3 Computer applications
  • 9.9.4 Josephson junction devices
  • 9.9.5 Maglev vehicles
  • 9.9.6 Medical applications
  • Formulae
  • Solved Problems
  • Multiple Choice Questions
  • Answers
  • Review Questions
  • Chapter 10: Lasers
  • 10.1 Introduction
  • 10.2 Characteristics of laser radiation
  • 10.3 Spontaneous and stimulated emission
  • 10.4 Einstein's coefficients
  • 10.5 Population inversion
  • 10.6 Helium-Neon gas [He-Ne] laser
  • 10.7 Ruby laser
  • 10.8 Semiconductor lasers
  • 10.9 Carbon dioxide laser
  • 10.10 Applications of lasers
  • Formula
  • Solved Problems
  • Multiple Choice Questions
  • Answers
  • Review Questions
  • Chapter 11: Fibre Optics
  • 11.1 Introduction.
  • 11.2 Principle of optical fibre, acceptance angle and acceptance cone
  • 11.3 Numerical aperture (NA)
  • 11.4 Step index fibres and graded index fibres-transmission of signals in them
  • 11.5 Differences between step index fibres and graded index fibres
  • 11.6 Differences between single mode fibres and multimode fibres
  • 11.7 Attenuation in optical fibres
  • 11.8 Optical fibres in communication
  • 11.9 Advantages of optical fibres in communication
  • 11.10 Fibre optic sensing applications
  • (a) Displacement sensors
  • (b) Liquid level sensor
  • (c) Temperature and pressure sensor
  • (d) Chemical sensors
  • 11.11 Applications of optical fibres in medical field
  • Formulae
  • Solved Problems
  • Multiple Choice Questions
  • Answers
  • Review Questions
  • Chapter 12: Holography
  • 12.1 Introduction
  • 12.2 Basic principle of holography
  • 12.3 Recording of image on a holographic plate
  • 12.4 Reconstruction of image from a hologram
  • 12.5 Applications of holography
  • Multiple Choice Questions
  • Answers
  • Review Questions
  • Chapter 13: Nanotechnology
  • 13.1 Basic principle of nano science and nanotechnology
  • 13.2 Physical properties
  • (i) Geometric structure
  • (ii) Optical properties
  • (iii) Thermal properties
  • (iv) Magnetic properties
  • (v) Electronic properties
  • (vi) Mechanical properties
  • 13.3 Chemical properties
  • 13.4 Fabrication
  • 13.5 Production of nanoparticle
  • (i) Plasma arcing
  • (ii) Sol-gel method
  • (iii) Chemical vapour deposition
  • (iv) Ball milling
  • (v) Electrode position
  • 13.6 Carbon nanotubes
  • (a) Introduction
  • (b) Formation of nano tubes
  • (c) Properties of nanotubes
  • (d) Applications of nanotubes
  • 13.7 Applications of nanotechnology
  • Multiple Choice Questions
  • Answers
  • Review Questions
  • Chapter 14: Optics
  • 14.1 Superposition of waves
  • 14.2 Young's double slit experiment.
  • Explanation of interference.