Op amps for everyone
The op amp IC has become the universal analog IC because it can perform all analog tasks. OP AMPS FOR EVERYONE provides the theoretical tools and practical know-how to get the most from these versatile devices. This new edition substantially updates coverage for low-speed and high-speed applicatio...
Otros Autores: | , |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Amsterdam ; Boston :
Elsevier, Newnes
c2009.
|
Edición: | 3rd ed |
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009627747206719 |
Tabla de Contenidos:
- Front Cover; Op Amps for Everyone; Copyright Page; Important Notice; Dedication; Contents; Foreword; First Edition Credits; Preface to the Third Edition; Chapter 1: The Op Amp's Place in the World; 1.5 The Transistor Era; Chapter 2: Review of Circuit Theory; 2.2 Laws of Physics; 2.7 Calculation of a Saturated Transistor Circuit; 2.8 Transistor Amplifier; Chapter 3: Development of the Ideal Op Amp Equations; 3.8 Capacitors; 3.10 Summary; Chapter 4: Single Supply Op Amp Design Techniques; 4.2 Circuit Analysis; 4.3.2 Case 2. VOUT = mVIN - b; 4.3.3 Case 3. VOUT = -mVIN + b
- Chapter 5: Beyond Case 45.4 Noninverting Attenuation with Negative Offset; Chapter 6: Feedback and Stability Theory; 6.2 Block Diagram Math and Manipulations; Chapter 7: Development of the Nonideal Op Amp Equations; 7.2 Review of the Canonical Equations; Chapter 8: Voltage Feedback Op Amp Compensation; 8.4 Dominant Pole Compensation; 8.6 Lead Compensation; 8.8 Lead/Lag Compensation; Chapter 9: Current Feedback Op Amp Analysis; 9.4 The Noninverting CFA; 9.5 The Inverting CFA; 9.6 Stability Analysis; 9.8 Stability and Input Capacitance; 9.9 Stability and Feedback Capacitance
- 9.10 Compensation of CF and CGChapter 10: Voltage and Current Feedback Op Amp Comparison; 10.2 Precision; 10.3 Bandwidth; 10.4 Stability; Chapter 11: Fully Differential Op Amps; 11.4 Differential Gain Stages; 11.5 Single Ended to Differential Conversion; 11.7 A New Function; 11.8 Conceptualizing the VOCM Input; 11.10.1 Single Pole Filters; 11.10.4 Biquad Filter; Chapter 12: Op Amp Noise Theory and Applications; 12.2.2 Noise Floor; 12.3 Types of Noise; 12.4.3 Red/Brown Noise; 12.5.5 Noninverting Op Amp Circuit Noise; Chapter 13: Understanding Op Amp Parameters
- 13.3 Temperature Coefficient of Input Offset Voltage, alphaVIO or alphaVIO13.11 Bandwidth Parameter, BW; 13.13 Common Mode Input Capacitance Parameter, Cic or Ci(c); 13.16 Supply Voltage Sensitivity, DeltaVDDplusmn(or CCplusmn)/DeltaVIO or kSVS; 13.20 Supply Current (Shutdown) Parameter, ICC(SHDN) or IDD(SHDN); 13.21 Supply Current Parameter, ICC or IDD; 13.29 Supply Rejection Ratio Parameter, kSVR; 13.37 Null Resistance Condition, Rnull; 13.38 Output Resistance Parameters, ro; 13.43 Turn off Time (Shutdown) Parameter, tDIS or t(off); 13.53 Input Voltage Range Condition or Parameter, VI
- 13.58 Turn on Voltage (Shutdown) Parameter, VIH-SHDN or V(ON)13.62 Equivalent Input Noise Voltage Parameter, Vn; 13.64 High Level Output Voltage Condition or Parameter, VOH; 13.67 Peak to Peak Output Voltage Swing Condition or Parameter, VO(PP); 13.71 Open Loop Transimpedance Parameter, Zt; 13.78 Input Offset Voltage Long Term Drift Parameter; 13.79 Lead Temperature for 10 or 60 Seconds; Chapter 14: Instrumentation: Sensors to A/D Converters; 14.2 Transducer Types; 14.3 Design Procedure; 14.4 Review of the System Specifications; 14.11 Summary
- Chapter 15: Interfacing an Op Amp to an Analog to Digital Converter