Optimal resource allocation with practical statistical applications and theory

A UNIQUE ENGINEERING AND STATISTICAL APPROACH TO OPTIMAL RESOURCE ALLOCATION Optimal Resource Allocation: With Practical Statistical Applications and Theory features the application of probabilistic and statistical methods used in reliability engineering during the different phases of life cycles of...

Descripción completa

Detalles Bibliográficos
Autor principal: Ushakov, I. A. (-)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Hoboken, N.J. : Wiley 2013.
Edición:1st edition
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009627671706719
Tabla de Contenidos:
  • Cover; Title page; Copyright page; Dedication; Contents; Preface; CHAPTER 1: Basic Mathematical Redundancy Models; 1.1 Types of Models; 1.2 Non-repairable Redundant Group with Active Redundant Units; 1.3 Non-repairable Redundant Group with Standby Redundant Units; 1.4 Repairable Redundant Group with Active Redundant Units; 1.5 Repairable Redundant Group with Standby Redundant Units; 1.6 Multi-level Systems and System Performance Estimation; 1.7 Brief Review of Other Types of Redundancy; 1.7.1 Two-Pole Structures; 1.7.2 Multi-Pole Networks; 1.7.3 Branching Structures
  • 1.7.4 Functional Redundancy1.8 Time Redundancy; 1.9 Some Additional Optimization Problems; 1.9.1 Dynamic Redundancy; Chronological Bibliography of Main Monographs on Reliability Theory (with topics on Optimization); CHAPTER 2: Formulation of Optimal Redundancy Problems; 2.1 Problem Description; 2.2 Formulation of the Optimal Redundancy Problem with a Single Restriction; 2.3 Formulation of Optimal Redundancy Problems with Multiple Constraints; 2.3.1 Direct Optimal Redundancy Problem; 2.3.2 Inverse Optimal Redundancy Problem; 2.4 Formulation of Multi-Criteria Optimal Redundancy Problems
  • 2.4.1 Direct Multi-Criteria Optimal Redundancy Problem2.4.2 Inverse Multi-Criteria Optimal Redundancy Problem; Chronological Bibliography; CHAPTER 3: Method of Lagrange Multipliers; Chronological Bibliography; CHAPTER 4: Steepest Descent Method; 4.1 The Main Idea of SDM; 4.2 Description of the Algorithm; 4.3 The Stopping Rule; 4.5 Approximate Solution; Chronological Bibliography; CHAPTER 5: Dynamic Programming; 5.1 Bellman's Algorithm; 5.2 Kettelle's Algorithm; 5.2.1 General Description of the Method; 5.2.2 Numerical Example; 5.2.3 Solving the Direct and Inverse Problems of Optimal Redundancy
  • Chronological BibliographyCHAPTER 6: Universal Generating Functions; 6.1 Generating Function; 6.2 Universal GF (U-function); Chronological Bibliography; CHAPTER 7: Genetic Algorithms; 7.1 Introduction; 7.1.1 Initialization; 7.1.2 Selection; 7.1.3 Reproduction; 7.1.4 Termination; 7.2 Structure of Steady-State Genetic Algorithms; 7.3 Related Techniques; Chronological Bibliography; CHAPTER 8: Monte Carlo Simulation; 8.1 Introductory Remarks; 8.2 Formulation of Optimal Redundancy Problems in Statistical Terms; 8.3 Algorithm for Trajectory Generation; 8.4 Description of the Idea of the Solution
  • 8.5 Inverse Optimization Problem8.5.1 System Successful Operation versus System Cost; 8.5.2 System Average Time to Failure versus System Cost; 8.6 Direct Optimization Problem; 8.6.1 System Cost versus Successful Operation; 8.6.2 System Cost versus Average Time to Failure; Chronological Bibliography; CHAPTER 9: Comments on Calculation Methods; 9.1 Comparison of Methods; 9.2 Sensitivity Analysis of Optimal Redundancy Solutions; CHAPTER 10: Optimal Redundancy with Several Limiting Factors; 10.1 Method of "Weighing Costs"; 10.2 Method of Generalized Generating Functions
  • Chronological Bibliography