Panoramic imaging sensor-line cameras and laser range-finders
Panoramic imaging is a progressive application and research area. This technology has applications in digital photography, robotics, film productions for panoramic screens, architecture, environmental studies, remote sensing and GIS technology. Applications demand different levels of accuracy for 3D...
Otros Autores: | , , |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
West Sussex, England :
Wiley
2008.
|
Edición: | 1st edition |
Colección: | Wiley-IS&T series in imaging science and technology.
|
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009627623206719 |
Tabla de Contenidos:
- Panoramic Imaging; Contents; Preface; Series Preface; Website and Exercises; List of Symbols; 1 Introduction; 1.1 Panoramas; 1.1.1 Accurate Panoramic Imaging; 1.1.2 Importance of Panoramas; 1.2 Panoramic Paintings; 1.2.1 Chinese Scrolls; 1.2.2 European Panoramic Paintings; 1.3 Panoramic or Wide-Angle Photographs; 1.3.1 Historic Panoramic Cameras; 1.3.2 Photogrammetry; 1.4 Digital Panoramas; 1.4.1 Image Mosaicing; 1.4.2 Panoramas by Stitching; 1.4.3 Catadioptric Panoramas; 1.4.4 Stereo Panoramic Imaging; 1.5 Striving for Accuracy; 1.5.1 A General Perspective on Panoramic Sensors
- 1.5.2 Rotating Sensor-Line Cameras1.5.3 Laser Range-Finder; 1.6 Exercises; 1.7 Further Reading; 2 Cameras and Sensors; 2.1 Camera Models; 2.1.1 Capturing Surface and Central Point; 2.1.2 Pinhole Camera; 2.1.3 Ideal Pinhole Camera; 2.1.4 Sensor-Matrix Cameras; 2.1.5 Sensor-Line Cameras; 2.2 Optics; 2.2.1 Waves and Rays of Light; Law of Refraction; 2.2.2 Ideal Gaussian Optics; 2.2.3 Pupil, Aperture, and f-Number; 2.2.4 Relation to the Pinhole Camera; 2.3 Sensor Models; 2.3.1 Rotating Sensor-Line Cameras; 2.3.2 Rotating Multi-Line Cameras; 2.3.3 Rotating Sensor-Matrix Cameras
- 2.3.4 Laser Range-Finder2.4 Examples and Challenges; 2.5 Exercises; 2.6 Further Reading; 3 Spatial Alignments; 3.1 Mathematical Fundamentals; 3.1.1 Euclidean Spaces and Coordinate Systems; 3.1.2 2D Manifolds and Surface Normals; 3.1.3 Vectors, Matrices, and Affine Transforms; 3.2 Central Projection: World into Image Plane; 3.2.1 Symmetric Perspective Projections; 3.2.2 Asymmetric Perspective Projections; 3.3 Classification of Panoramas; 3.3.1 Views and Projection Centers; 3.3.2 Refined Classification; 3.4 Coordinate Systems for Panoramas; 3.4.1 Planar Capturing Surface
- 3.4.2 Spherical Capturing Surfaces3.4.3 Cylindrical Capturing Surfaces; 3.5 Geometric Projection Formula for Cylindrical Panorama; 3.6 Rotating Cameras; 3.6.1 Image Vectors and Projection Rays; 3.6.2 Single-Center Panorama (Ideal Case); 3.6.3 Multi-Center Panorama with ω = 0; 3.6.4 Multi-Center Panorama with ω0; 3.6.5 General Case of a Rotating Sensor-Line Camera; 3.7 Mappings between Different Image Surfaces; 3.7.1 Reprojection onto a Straight Cylinder; 3.7.2 Cylindrical Panorama onto Sphere; 3.7.3 Cylindrical Panorama onto Tangential Plane; 3.8 Laser Range-Finder; 3.9 Exercises
- 3.10 Further Reading4 Epipolar Geometry; 4.1 General Epipolar Curve Equation; 4.2 Constrained Poses of Cameras; 4.2.1 Leveled Panoramic Pair; 4.2.2 Co-axial Panoramic Pair; 4.2.3 Symmetric Panoramic Pair; 4.3 Exercises; 4.4 Further Reading; 5 Sensor Calibration; 5.1 Basics; 5.1.1 Camera Calibration; 5.1.2 Extrinsic and Intrinsic Parameters; 5.1.3 Registration and Calibration; 5.2 Preprocesses for a Rotating Sensor-Line Camera; 5.2.1 Precalibration; 5.2.2 Correction of Color Shift; 5.2.3 Radiometric Corrections; 5.2.4 Geometric Corrections; 5.2.5 Correction of Mechanical Vibrations
- 5.3 A Least-Square Error Optimization Calibration Procedure