Compression of biomedical images and signals
During the last decade, image and signal compression for storage and transmission purpose has seen a great expansion. But what about medical data compression? Should a medical image or a physiological signal be processed and compressed like any other data? The progress made in imaging systems, stori...
Otros Autores: | , |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
London : Hoboken, NJ :
ISTE ; John Wiley & Sons
2008.
|
Edición: | 1st edition |
Colección: | ISTE
|
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009627572506719 |
Tabla de Contenidos:
- Compression of Biomedical Images and Signals; Table of Contents; Preface; Chapter 1. Relevance of Biomedical Data Compression; 1.1. Introduction; 1.2. The management of digital data using PACS; 1.2.1. Usefulness of PACS; 1.2.2. The limitations of installing a PACS; 1.3. The increasing quantities of digital data; 1.3.1. An example from radiology; 1.3.2. An example from anatomic pathology; 1.3.3. An example from cardiology with ECG; 1.3.4. Increases in the number of explorative examinations; 1.4. Legal and practical matters; 1.5. The role of data compression; 1.6. Diagnostic quality
- 1.6.1. Evaluation1.6.2. Reticence; 1.7. Conclusion; 1.8. Bibliography; Chapter 2. State of the Art of Compression Methods; 2.1. Introduction; 2.2. Outline of a generic compression technique; 2.2.1. Reducing redundancy; 2.2.2. Quantizing the decorrelated information; 2.2.3. Coding the quantized values; 2.2.4. Compression ratio, quality evaluation; 2.3. Compression of still images; 2.3.1. JPEG standard; 2.3.1.1. Why use DCT?; 2.3.1.2. Quantization; 2.3.1.3. Coding; 2.3.1.4. Compression of still color images with JPEG; 2.3.1.5. JPEG standard: conclusion; 2.3.2. JPEG 2000 standard
- 2.3.2.1. Wavelet transform2.3.2.2. Decomposition of images with the wavelet transform; 2.3.2.3. Quantization and coding of subbands; 2.3.2.4. Wavelet-based compression methods, serving as references; 2.3.2.5. JPEG 2000 standard; 2.4. The compression of image sequences; 2.4.1. DCT-based video compression scheme; 2.4.2. A history of and comparison between video standards; 2.4.3. Recent developments in video compression; 2.5. Compressing 1D signals; 2.6. The compression of 3D objects; 2.7. Conclusion and future developments; 2.8. Bibliography
- Chapter 3. Specificities of Physiological Signals and Medical Images3.1. Introduction; 3.2. Characteristics of physiological signals; 3.2.1. Main physiological signals; 3.2.1.1. Electroencephalogram (EEG); 3.2.1.2. Evoked potential (EP); 3.2.1.3. Electromyogram (EMG); 3.2.1.4. Electrocardiogram (ECG); 3.2.2. Physiological signal acquisition; 3.2.3. Properties of physiological signals; 3.2.3.1. Properties of EEG signals; 3.2.3.2. Properties of ECG signals; 3.3. Specificities of medical images; 3.3.1. The different features of medical imaging formation processes; 3.3.1.1. Radiology
- 3.3.1.2. Magnetic resonance imaging (MRI)3.3.1.3. Ultrasound; 3.3.1.4. Nuclear medicine; 3.3.1.5. Anatomopathological imaging; 3.3.1.6. Conclusion; 3.3.2. Properties of medical images; 3.3.2.1. The size of images; 3.3.2.2. Spatial and temporal resolution; 3.3.2.3. Noise in medical images; 3.4. Conclusion; 3.5. Bibliography; Chapter 4. Standards in Medical Image Compression; 4.1. Introduction; 4.2. Standards for communicating medical data; 4.2.1. Who creates the standards, and how?; 4.2.2. Standards in the healthcare sector; 4.2.2.1. Technical committee 251 of CEN
- 4.2.2.2. Technical committee 215 of the ISO