Synchronization and arbitration in digital systems
Today's networks of processors on and off chip, operating with independent clocks, need effective synchronization of the data passing between them for reliability. When two or more processors request access to a common resource, such as a memory, an arbiter has to decide which request to deal w...
Autor principal: | |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Hoboken, NJ :
J. Wiley & Sons
2007.
|
Edición: | 1st edition |
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009627506606719 |
Tabla de Contenidos:
- Synchronization and Arbitration in Digital Systems; Contents; Preface; List of Contributors; Acknowledgements; 1 Synchronization, Arbitration and Choice; 1.1 INTRODUCTION; 1.2 THE PROBLEM OF CHOICE; 1.3 CHOICE IN ELECTRONICS; 1.4 ARBITRATION; 1.5 CONTINUOUS AND DISCRETE QUANTITIES; 1.6 TIMING; 1.7 BOOK STRUCTURE; Part I; 2 Modelling Metastability; 2.1 THE SYNCHRONIZER; 2.2 LATCH MODEL; 2.3 FAILURE RATES; 2.3.1 Event Histograms and MTBF; 2.4 LATCHES AND FLIP-FLOPS; 2.5 CLOCK BACK EDGE; 3 Circuits; 3.1 LATCHES AND METASTABILITY FILTERS; 3.2 EFFECTS OF FILTERING; 3.3 THE JAMB LATCH
- 3.3.1 Jamb Latch Flip-. op3.4 LOW COUPLING LATCH; 3.5 THE Q-FLOP; 3.6 THE MUTEX; 3.7 ROBUST SYNCHRONIZER; 3.8 THE TRI-FLOP; 4 Noise and its Effects; 4.1 NOISE; 4.2 EFFECT OF NOISE ON A SYNCHRONIZER; 4.3 MALICIOUS INPUTS; 4.3.1 Synchronous Systems; 4.3.2 Asynchronous Systems; 5 Metastability Measurements; 5.1 CIRCUIT SIMULATION; 5.1.1 Time Step Control; 5.1.2 Long-term τ; 5.1.3 Using Bisection; 5.2 SYNCHRONIZER FLIP-FLOP TESTING; 5.3 RISING AND FALLING EDGES; 5.4 DELAY-BASED MEASUREMENT; 5.5 DEEP METASTABILITY; 5.6 BACK EDGE MEASUREMENT; 5.7 MEASURE AND SELECT; 5.7.1 Failure Measurement
- 5.7.2 Synchronizer Selection6 Conclusions Part I; Part II; 7 Synchronizers in Systems; 7.1 LATENCY AND THROUGHPUT; 7.2 FIFO SYNCHRONIZER; 7.3 AVOIDING SYNCHRONIZATION; 7.4 PREDICTIVE SYNCHRONIZERS; 7.5 OTHER LOW-LATENCY SYNCHRONIZERS; 7.5.1 Locally Delayed Latching (LDL); 7.5.2 Speculative Synchronization; 7.5.2.1 Synchronization error detection; 7.5.2.2 Pipelining; 7.5.2.3 Recovery; 7.6 ASYNCHRONOUS COMMUNICATION MECHANISMS (ACM); 7.6.1 Slot Mechanisms; 7.6.2 Three-slot Mechanism; 7.6.3 Four-slot Mechanism; 7.6.4 Hardware Design and Metastability; 7.7 SOME COMMON SYNCHRONIZER DESIGN ISSUES
- 7.7.1 Unsynchronized Paths7.7.1.1 No acknowledge; 7.7.1.2 Unsynchronized reset back edge; 7.7.2 Moving Metastability Out of Sight; 7.7.2.1 Disturbing a metastable latch; 7.7.2.2 The second chance; 7.7.2.3 Metastability blocker; 7.7.3 Multiple Synchronizer Flops; 7.7.3.1 The data synchronizer; 7.7.3.2 The redundant synchronizer; 8 Networks and Interconnects; 8.1 COMMUNICATION ON CHIP; 8.1.1 Comparison of Network Architectures; 8.2 INTERCONNECT LINKS; 8.3 SERIAL LINKS; 8.3.1 Using One Line; 8.3.2 Using Two Lines; 8.4 DIFFERENTIAL SIGNALLING; 8.5 PARALLEL LINKS; 8.5.1 One Hot Codes
- 8.5.2 Transition Signalling8.5.3 n of m Codes; 8.5.4 Phase Encoding; 8.5.4.1 Phase encoding sender; 8.5.4.2 Receiver; 8.5.5 Time Encoding; 8.6 PARALLEL SERIAL LINKS; 9 Pausible and Stoppable Clocks in GALS; 9.1 GALS CLOCK GENERATORS; 9.2 CLOCK TREE DELAYS; 9.3 A GALS WRAPPER; 10 Conclusions Part II; Part III; 11 Arbitration; 11.1 INTRODUCTION; 11.2 ARBITER DEFINITION; 11.3 ARBITER APPLICATIONS, RESOURCE ALLOCATION POLICIES AND COMMON ARCHITECTURES; 11.4 SIGNAL TRANSITION GRAPHS, OUR MAIN MODELLING LANGUAGE; 12 Simple Two-way Arbiters; 12.1 BASIC CONCEPTS AND CONVENTIONS
- 12.1.1 Two-phase or Non-return-to-zero (NRZ) Protocols