6LoWPAN the wireless embedded internet

"It is stunningly thorough and takes readers meticulously through the design, configuration and operation of IPv6-based, low-power, potentially mobile radio-based networking." Vint Cerf, Vice President and Chief Internet Evangelist, Google This book provides a complete overview o...

Descripción completa

Detalles Bibliográficos
Autor principal: Shelby, Zach (-)
Otros Autores: Bormann, Carsten
Formato: Libro electrónico
Idioma:Inglés
Publicado: Chichester, West Sussex, U.K. ; Hoboken, NJ : J. Wiley 2009.
Edición:1st edition
Colección:Wiley series on communications networking & distributed systems ; 34
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009627353706719
Tabla de Contenidos:
  • -- List of Figures ix
  • List of Tables xiii
  • Foreword xv
  • Preface xvii
  • Acknowledgments xix
  • 1 Introduction 1
  • 1.1 The Wireless Embedded Internet 3
  • 1.1.1 Why 6LoWPAN? 4
  • 1.1.2 6LoWPAN history and standardization 6
  • 1.1.3 Relation of 6LoWPAN toother trends 8
  • 1.1.4 Applications of 6LoWPAN 9
  • 1.1.5 Example: facility management 11
  • 1.2 The 6LoWPAN Architecture 13
  • 1.3 6LoWPAN Introduction 15
  • 1.3.1 The protocol stack 16
  • 1.3.2 Link layers for 6LoWPAN 17
  • 1.3.3 Addressing 19
  • 1.3.4 Header format 20
  • 1.3.5 Bootstrapping 20
  • 1.3.6 Mesh topologies 22
  • 1.3.7 Internet integration 23
  • 1.4 Network Example 24
  • 2 The 6LoWPAN Format 27
  • 2.1 Functions of an Adaptation Layer 28
  • 2.2 Assumptions About the Link Layer 29
  • 2.2.1 Link-layer technologies beyond IEEE 802.15.4 29
  • 2.2.2 Link-layer service model 30
  • 2.2.3 Link-layer addressing 31
  • 2.2.4 Link-layer management and operation 32
  • 2.3 The Basic 6LoWPAN Format 32
  • 2.4 Addressing 34
  • 2.5 Forwarding and Routing 37
  • 2.5.1 L2 forwarding (“Mesh-Under”) 38
  • 2.5.2 L3 routing (“Route-Over”) 40
  • 2.6 Header Compression 41
  • 2.6.1 Stateless header compression 43
  • 2.6.2 Context-based header compression 45
  • 2.7 Fragmentation and Reassembly 52
  • 2.7.1 The fragmentation format 55
  • 2.7.2 Avoiding the fragmentation performance penalty 59
  • 2.8 Multicast 59
  • 3 Bootstrapping and Security 63
  • 3.1 Commissioning 64
  • 3.2 Neighbor Discovery 66
  • 3.2.1 Forming addresses 67
  • 3.2.2 Registration 69
  • 3.2.3 Registration collisions 73
  • 3.2.4 Multihop registration 77
  • 3.2.5 Node operation 80
  • 3.2.6 Router operation 81
  • 3.2.7 Edge router operation 82
  • 3.3 Security 83
  • 3.3.1 Security objectives and threat models 84
  • 3.3.2 Layer2 mechanisms 85
  • 3.3.3 Layer3 mechanisms 87
  • 3.3.4 Key management 89
  • 4 Mobility and Routing 91
  • 4.1 Mobility 92
  • 4.1.1 Mobility types 92
  • 4.1.2 Solutions for mobility 94
  • 4.1.3 Application methods 96
  • 4.1.4 Mobile IPv6 97.
  • 4.1.5 Proxy Home Agent 100
  • 4.1.6 ProxyMIPv6 100
  • 4.1.7 NEMO 102
  • 4.2 Routing 104
  • 4.2.1 Overview 104
  • 4.2.2 The role of Neighbor Discovery 107
  • 4.2.3 Routing requirements 108
  • 4.2.4 Route metrics 109
  • 4.2.5 MANET routing protocols 111
  • 4.2.6 The ROLL routing protocol 114
  • 4.2.7 Border routing 119
  • 4.3 IPv4 Interconnectivity 120
  • 4.3.1 IPv6 transition 121
  • 4.3.2 IPv6-in-IPv4 tunneling 122
  • 5 Application Protocols 125
  • 5.1 Introduction 126
  • 5.2 Design Issues 127
  • 5.2.1 Linklayer 129
  • 5.2.2 Networking 130
  • 5.2.3 Host issues 130
  • 5.2.4 Compression 131
  • 5.2.5 Security 131
  • 5.3 Protocol Paradigms 132
  • 5.3.1 End-to-end 132
  • 5.3.2 Real-time streaming and sessions 132
  • 5.3.3 Publish/subscribe 133
  • 5.3.4 Web service paradigms 134
  • 5.4 Common Protocols 134
  • 5.4.1 Web service protocols 135
  • 5.4.2 MQ telemetry transport for sensor networks (MQTT-S) 137
  • 5.4.3 ZigBee compact application protocol (CAP) 139
  • 5.4.4 Service discovery 141
  • 5.4.5 Simple network management protocol (SNMP) 142
  • 5.4.6 Real-time transport and sessions 143
  • 5.4.7 Industry-specific protocols 144
  • 6 Using 6LoWPAN 149
  • 6.1 Chip Solutions 150
  • 6.1.1 Single-chip solutions 150
  • 6.1.2 Two-chip solutions 151
  • 6.1.3 Network processor solutions 151
  • 6.2 Protocol Stacks 152
  • 6.2.1 ContikianduIPv6 153
  • 6.2.2 TinyOS and BLIP 153
  • 6.2.3 Sensinode NanoStack 154
  • 6.2.4 Jennic6LoWPAN 155
  • 6.2.5 Nivis ISA100 155
  • 6.3 Application Development 156
  • 6.4 Edge Router Integration 159
  • 7 System Examples 163
  • 7.1 ISA100 Industrial Automation 164
  • 7.1.1 Motivation for industrial wireless sensor networks 164
  • 7.1.2 Complications of the industrial space 165
  • 7.1.3 The ISA100.11a standard 166
  • 7.1.4 ISA100.11a data link layer 169
  • 7.2 Wireless RFID Infrastructure 170
  • 7.2.1 Technical overview 172
  • 7.2.2 Benefits from 6LoWPAN 173
  • 7.3 Building Energy Savings and Management 174
  • 7.3.1 Network architecture 174
  • 7.3.2 Technical overview 174.
  • 7.3.3 Benefits from 6LoWPAN 175
  • 8 Conclusion 177
  • A IPv6 Reference 181
  • A.1 Notation 181
  • A.2 Addressing 182
  • A.3 IPv6 Neighbor Discovery 184
  • A.4 IPv6 Stateless Address Autoconfiguration 188
  • B IEEE 802.15.4 Reference 191
  • B.1 Introduction 191
  • B.2 Overall Packet Format 192
  • B.3 MAC-layer Security 194
  • List of Abbreviations 195
  • Glossary 203
  • References 209
  • Index 219.