6LoWPAN the wireless embedded internet
"It is stunningly thorough and takes readers meticulously through the design, configuration and operation of IPv6-based, low-power, potentially mobile radio-based networking." Vint Cerf, Vice President and Chief Internet Evangelist, Google This book provides a complete overview o...
Autor principal: | |
---|---|
Otros Autores: | |
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Chichester, West Sussex, U.K. ; Hoboken, NJ :
J. Wiley
2009.
|
Edición: | 1st edition |
Colección: | Wiley series on communications networking & distributed systems ;
34 |
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009627353706719 |
Tabla de Contenidos:
- -- List of Figures ix
- List of Tables xiii
- Foreword xv
- Preface xvii
- Acknowledgments xix
- 1 Introduction 1
- 1.1 The Wireless Embedded Internet 3
- 1.1.1 Why 6LoWPAN? 4
- 1.1.2 6LoWPAN history and standardization 6
- 1.1.3 Relation of 6LoWPAN toother trends 8
- 1.1.4 Applications of 6LoWPAN 9
- 1.1.5 Example: facility management 11
- 1.2 The 6LoWPAN Architecture 13
- 1.3 6LoWPAN Introduction 15
- 1.3.1 The protocol stack 16
- 1.3.2 Link layers for 6LoWPAN 17
- 1.3.3 Addressing 19
- 1.3.4 Header format 20
- 1.3.5 Bootstrapping 20
- 1.3.6 Mesh topologies 22
- 1.3.7 Internet integration 23
- 1.4 Network Example 24
- 2 The 6LoWPAN Format 27
- 2.1 Functions of an Adaptation Layer 28
- 2.2 Assumptions About the Link Layer 29
- 2.2.1 Link-layer technologies beyond IEEE 802.15.4 29
- 2.2.2 Link-layer service model 30
- 2.2.3 Link-layer addressing 31
- 2.2.4 Link-layer management and operation 32
- 2.3 The Basic 6LoWPAN Format 32
- 2.4 Addressing 34
- 2.5 Forwarding and Routing 37
- 2.5.1 L2 forwarding (“Mesh-Under”) 38
- 2.5.2 L3 routing (“Route-Over”) 40
- 2.6 Header Compression 41
- 2.6.1 Stateless header compression 43
- 2.6.2 Context-based header compression 45
- 2.7 Fragmentation and Reassembly 52
- 2.7.1 The fragmentation format 55
- 2.7.2 Avoiding the fragmentation performance penalty 59
- 2.8 Multicast 59
- 3 Bootstrapping and Security 63
- 3.1 Commissioning 64
- 3.2 Neighbor Discovery 66
- 3.2.1 Forming addresses 67
- 3.2.2 Registration 69
- 3.2.3 Registration collisions 73
- 3.2.4 Multihop registration 77
- 3.2.5 Node operation 80
- 3.2.6 Router operation 81
- 3.2.7 Edge router operation 82
- 3.3 Security 83
- 3.3.1 Security objectives and threat models 84
- 3.3.2 Layer2 mechanisms 85
- 3.3.3 Layer3 mechanisms 87
- 3.3.4 Key management 89
- 4 Mobility and Routing 91
- 4.1 Mobility 92
- 4.1.1 Mobility types 92
- 4.1.2 Solutions for mobility 94
- 4.1.3 Application methods 96
- 4.1.4 Mobile IPv6 97.
- 4.1.5 Proxy Home Agent 100
- 4.1.6 ProxyMIPv6 100
- 4.1.7 NEMO 102
- 4.2 Routing 104
- 4.2.1 Overview 104
- 4.2.2 The role of Neighbor Discovery 107
- 4.2.3 Routing requirements 108
- 4.2.4 Route metrics 109
- 4.2.5 MANET routing protocols 111
- 4.2.6 The ROLL routing protocol 114
- 4.2.7 Border routing 119
- 4.3 IPv4 Interconnectivity 120
- 4.3.1 IPv6 transition 121
- 4.3.2 IPv6-in-IPv4 tunneling 122
- 5 Application Protocols 125
- 5.1 Introduction 126
- 5.2 Design Issues 127
- 5.2.1 Linklayer 129
- 5.2.2 Networking 130
- 5.2.3 Host issues 130
- 5.2.4 Compression 131
- 5.2.5 Security 131
- 5.3 Protocol Paradigms 132
- 5.3.1 End-to-end 132
- 5.3.2 Real-time streaming and sessions 132
- 5.3.3 Publish/subscribe 133
- 5.3.4 Web service paradigms 134
- 5.4 Common Protocols 134
- 5.4.1 Web service protocols 135
- 5.4.2 MQ telemetry transport for sensor networks (MQTT-S) 137
- 5.4.3 ZigBee compact application protocol (CAP) 139
- 5.4.4 Service discovery 141
- 5.4.5 Simple network management protocol (SNMP) 142
- 5.4.6 Real-time transport and sessions 143
- 5.4.7 Industry-specific protocols 144
- 6 Using 6LoWPAN 149
- 6.1 Chip Solutions 150
- 6.1.1 Single-chip solutions 150
- 6.1.2 Two-chip solutions 151
- 6.1.3 Network processor solutions 151
- 6.2 Protocol Stacks 152
- 6.2.1 ContikianduIPv6 153
- 6.2.2 TinyOS and BLIP 153
- 6.2.3 Sensinode NanoStack 154
- 6.2.4 Jennic6LoWPAN 155
- 6.2.5 Nivis ISA100 155
- 6.3 Application Development 156
- 6.4 Edge Router Integration 159
- 7 System Examples 163
- 7.1 ISA100 Industrial Automation 164
- 7.1.1 Motivation for industrial wireless sensor networks 164
- 7.1.2 Complications of the industrial space 165
- 7.1.3 The ISA100.11a standard 166
- 7.1.4 ISA100.11a data link layer 169
- 7.2 Wireless RFID Infrastructure 170
- 7.2.1 Technical overview 172
- 7.2.2 Benefits from 6LoWPAN 173
- 7.3 Building Energy Savings and Management 174
- 7.3.1 Network architecture 174
- 7.3.2 Technical overview 174.
- 7.3.3 Benefits from 6LoWPAN 175
- 8 Conclusion 177
- A IPv6 Reference 181
- A.1 Notation 181
- A.2 Addressing 182
- A.3 IPv6 Neighbor Discovery 184
- A.4 IPv6 Stateless Address Autoconfiguration 188
- B IEEE 802.15.4 Reference 191
- B.1 Introduction 191
- B.2 Overall Packet Format 192
- B.3 MAC-layer Security 194
- List of Abbreviations 195
- Glossary 203
- References 209
- Index 219.