Data mining practical machine learning tools and techniques

As with any burgeoning technology that enjoys commercial attention, the use of data mining is surrounded by a great deal of hype. Exaggerated reports tell of secrets that can be uncovered by setting algorithms loose on oceans of data. But there is no magic in machine learning, no hidden power, no al...

Descripción completa

Detalles Bibliográficos
Autor principal: Witten, I. H. (-)
Otros Autores: Frank, Eibe
Formato: Libro electrónico
Idioma:Inglés
Publicado: Amsterdam ; Boston, MA : Morgan Kaufman 2005.
Edición:2nd ed
Colección:Morgan Kaufmann series in data management systems.
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009627293106719
Tabla de Contenidos:
  • PART I: MACHINE LEARNING TOOLS AND TECHNIQUES; 1 What's it all about?; 2 Input: Concepts, instances, and attributes; 3 Output: Knowledge representation; 4 Algorithms: The basic methods; 5 Credibility: Evaluating what's been learned; 6 Implementations: Real machine learning schemes; 7 Transformations: Engineering the input and output; 8 Moving on: Extensions and applications; PART II: THE WEKA MACHINE LEARNING WORKBENCH; 9 Introduction to Weka; 10 The Explorer; 11 The Knowledge Flow Interface; 12 The Experimenter; 13 The Command-Line Interface; 14 Embedded machine learning; 15 Writing New Learning Schemes; References; Index; About the Authors.