Switchmode RF power amplifiers
A majority of people now have a digital mobile device whether it be a cell phone, laptop, or blackberry. Now that we have the mobility we want it to be more versatile and dependable; RF power amplifiers accomplish just that. These amplifiers take a small input and make it stronger and larger creatin...
Autor principal: | |
---|---|
Otros Autores: | |
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Burlington, MA ; Amsterdam :
Elsevier/Newnes
c2007.
|
Edición: | 1st ed |
Colección: | Communications engineering series Switchmode RF power amplifiers
|
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009627242606719 |
Tabla de Contenidos:
- Front Cover; Switchmode RF Power Amplifiers; Copyright Page; Table of Contents; About Andrei Grebennikov; About Nathan O. Sokal; Preface; Acknowledgments; Chapter 1: Power-Amplifier Design Principles; 1.1 Spectral-Domain Analysis; 1.2 Basic Classes of Operation: A, AB, B, and C; 1.4 High-Frequency Conduction Angle; 1.5 Nonlinear Effect of Collector Capacitance; 1.6 Push-Pull Power Amplifiers; References; Chapter 2: Class-D Power Amplifiers; 2.1 Switched-Mode Power Amplifiers with Resistive Load; 2.2 Complementary Voltage-Switching Configuration
- 2.3 Transformer-Coupled Voltage-Switching Configuration2.4 Symmetrical Current-Switching Configuration; 2.5 Transformer-Coupled Current-Switching Configuration; 2.6 Voltage-Switching Configuration with Reactive Load; Chapter 3: Class-F Power Amplifiers; 3.1 Biharmonic Operation Mode; 3.6 Load Networks with Lumped Elements; Chapter 4: Inverse Class F; 4.1 Biharmonic Operation Mode; 4.4 Load Networks with Lumped Elements; References; Chapter 5: Class E with Shunt Capacitance; 5.1 Effect of Detuned Resonant Circuit; 5.2 Load Network with Shunt Capacitor and Series Filter
- 5.3 Matching with Standard Load5.8 Load Network with Transmission Lines; 5.9 Practical RF and Microwave Class-E Power Amplifiers and Applications; References; Chapter 6: Class E with Finite dc-Feed Inductance; 6.1 Class E with One Capacitor and One Inductor; 6.2 Generalized Class-E Load Network with Finite dc-Feed Inductance; 6.7 Load Network with Transmission Lines; 6.9 Power Gain; Chapter 7: Class E with Quarter-wave Transmission Line; 7.1 Load Network with Parallel Quarter-wave Line; 7.2 Optimum Load Network Parameters; 7.4 Matching Circuit with Lumped Elements; References
- Chapter 8: Alternative and Mixed-Mode High-Efficiency Power Amplifiers8.2 Class-E/F Power Amplifiers; 8.4 Inverse Class-E Power Amplifiers; Chapter 9: Computer-Aided Design of Switched-Mode Power Amplifiers; 9.1 HB-PLUS Program for Half-Bridge and Full-Bridge Direct-Coupled Voltage-Switching Class-D and Class-DE Circuits; 9.4 HB-PLUS CAD Examples for Class D and Class DE; 9.5 HEPA-PLUS CAD Example for Class E; 9.7 ADS Circuit Simulator and Its Applicability to Switched-Mode Class E; Index