Handbook of computer aided geometric design
This book provides a comprehensive coverage of the fields Geometric Modeling, Computer-Aided Design, and Scientific Visualization, or Computer-Aided Geometric Design. Leading international experts have contributed, thus creating a one-of-a-kind collection of authoritative articles. There are chapter...
Otros Autores: | , , |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Amsterdam ; Boston, Mass. :
Elsevier
2002.
|
Edición: | 1st ed |
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009627214906719 |
Tabla de Contenidos:
- Front Cover; Handbook of Computer Aided Geometric Design; Copyright Page; Preface; Contents; Contributors; Chapter 1. A History of Curves and Surfaces in CAGD; 1.1. INTRODUCTION; 1.2. EARLY DEVELOPMENTS; 1.3. DE CASTELJAU AND BÉZIER; 1.4. PARAMETRIC CURVES; 1.5. RECTANGULAR SURFACES; 1.6. B-SPLINE CURVES AND NURBS; 1.7. TRIANGULAR PATCHES; 1.8. SUBDIVISION SURFACES; 1.9. SCIENTIFIC APPLICATIONS; 1.10. SHAPE; 1.11. INFLUENCES AND APPLICATIONS; Chapter 2. Geometric Fundamentals; 2.1. AFFINE FUNDAMENTALS; 2.2. CONIC SECTIONS AND QUADRICS; 2.3. THE EUCLIDEAN SPACE; 2.4. PROJECTIVE FUNDAMENTALS
- 2.5. DUALITY2.6. OSCULATING CURVES AND SURFACES; 2.7. DIFFERENTIAL FUNDAMENTALS; Chapter 3. Geometries for CAGD; 3.1. CURVES AND SURFACES IN PROJECTIVE GEOMETRY; 3.2. SPHERE GEOMETRIES; 3.3. LINE GEOMETRY; 3.4. APPROXIMATION IN SPACES OF GEOMETRIC OBJECTS; 3.5. NON-EUCLIDEAN GEOMETRIES; Chapter 4. Bézier Techniques; 4.1. WHY BÉZIER TECHNIQUES?; 4.2. BÉZIER CURVES; 4.3. RECTANGULAR BÉZIER PATCHES; 4.4. TRIANGULAR BÉZIER PATCHES; Chapter 5. Rational Techniques; 5.1. INTRODUCTION; 5.2. RATIONAL BÉZIER CURVES; 5.3. RATIONAL B-SPLINE CURVES; 5.4. GEOMETRIC CONTINUITY FOR RATIONAL CURVES
- 5.5. RATIONAL CURVE APPROXIMATION AND INTERPOLATION5.6. RATIONAL BÉZIER SURFACES; 5.7. RATIONAL B-SPLINE SURFACES; 5.8. GEOMETRIC CONTINUITY FOR RATIONAL PATCHES; 5.9. INTERPOLATION AND APPROXIMATION ALGORITHMS; 5.10. RATIONAL SURFACE CONSTRUCTIONS; 5.11. CONCLUDING REMARKS; Chapter 6. Spline Basics; 6.1. PIECEWISE POLYNOMIALS; 6.2. B-SPLINES DEFINED; 6.3. SUPPORT AND POSITIVITY; 6.4. SPLINE SPACES DEFINED; 6.5. SPECIFIC KNOT SEQUENCES; 6.6. THE POLYNOMIALS IN THE SPLINE SPACE: MARSDEN'S IDENTITY; 6.7. THE PIECEWISE POLYNOMIALS IN THE SPLINE SPACE; 6.8. DUAL FUNCTIONALS AND BLOSSOMS
- 6.9. GOOD CONDITION6.10. CONVEX HULL; 6.11. DIFFERENTIATION AND INTEGRATION; 6.12. EVALUATION; 6.13. SPLINE FUNCTIONS VS SPLINE CURVES; 6.14. KNOT INSERTION; 6.15. VARIATION DIMINUTION AND SHAPE PRESERVATION: SCHOENBERG'S OPERATOR; 6.16. ZEROS OF A SPLINE, COUNTING MULTIPLICITY; 6.17. SPLINE INTERPOLATION: SCHOENBERG-WHITNEY; 6.18. SMOOTHING SPLINE; 6.19. LEAST-SQUARES SPLINE APPROXIMATION; 6.20. BACKGROUND; Chapter 7. Curve and Surface Constructions; 7.1. INTRODUCTION; 7.2. POLYNOMIAL CURVE METHODS; 7.3. C2 CUBIC SPLINE INTERPOLATION; 7.4. POLYNOMIAL SURFACE METHODS
- 7.5. C2 BICUBIC SPLINE INTERPOLATION7.6. VOLUME DEFORMATIONS; Chapter 8. Geometric Continuity; 8.1. MOTIVATING EXAMPLES; 8.2. GEOMETRIC CONTINUITY OF PARAMETRIC CURVES/SURFACES; 8.3. EQUIVALENT AND ALTERNATIVE DEFINITIONS; 8.4. CONSTRUCTIONS; 8.5. ADDITIONAL LITERATURE; Chapter 9. Splines on Surfaces; 9.1. INTRODUCTION; 9.2. SCALAR SPLINES ON SMOOTH SURFACES; 9.3. ALTERNATIVE METHODS FOR FUNCTIONS ON SURFACES; Chapter 10. Box Splines; 10.1. BOX SPLINES; 10.2. BOX SPLINE SURFACES; 10.3. HALF-BOX SPLINES; 10.4. HALF-BOX SPLINE SURFACES; Chapter 11. Finite Element Approximation with Splines
- 11.1. INTRODUCTION