Nonimaging optics
From its inception nearly 30 years ago, the optical subdiscipline now referred to as nonimaging optics, has experienced dramatic growth. The term nonimaging optics is concerned with applications where imaging formation is not important but where effective and efficient collection , concentration, t...
Autor principal: | |
---|---|
Otros Autores: | , , |
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Burlington, MA :
Elsevier Academic Press
c2005.
|
Edición: | 1st edition |
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009627169106719 |
Tabla de Contenidos:
- Front Cover; NONIMAGING OPTICS; Copyright Page; CONTENTS; Preface; Chapter 1. Nonimaging Optical Systems and Their Uses; 1.1 Nonimaging Collectors; 1.2 Definition of the Concentration Ratio; The Theoretical Maximum; 1.3 Uses of Concentrators; 1.4 Uses of Illuminators; References; Chapter 2. Some Basic Ideas in Geometrical Optics; 2.1 The Concepts of Geometrical Optics; 2.2 Formulation of the Ray-Tracing Procedure; 2.3 Elementary Properties of Image-Forming Optical Systems; 2.4 Aberrations in Image-Forming Optical Systems
- 2.5 The Effect of Aberrations In an Image-Forming System on the Concentration Ratio2.6 The Optical Path Length and Fermat's Principle; 2.7 The Generalized étendue or Lagrange Invariant and the Phase Space Concept; 2.8 The Skew Invariant; 2.9 Different Versions of the Concentration Ratio; Reference; Chapter 3. Some Designs of Image-Forming Concentrators; 3.1 Introduction; 3.2 Some General Properties of Ideal Image-Forming Concentrators; 3.3 Can an Ideal Image-Forming Concentrator Be Designed?; 3.4 Media with Continuously Varying Refractive Indices; 3.5 Another System of Spherical Symmetry
- 3.6 Image-Forming Mirror Systems3.7 Conclusions on Classical Image-Forming Concentrators; References; Chapter 4. Nonimaging Optical Systems; 4.1 Limits to Concentration; 4.2 Imaging Devices and Their Limitations; 4.3 Nonimaging Concentrators; 4.4 The Edge-Ray Principle or "String" Method; 4.5 Light Cones; 4.6 The Compound Parabolic Concentrator; 4.7 Properties of the Compound Parabolic Concentrator; 4.8 Cones and Paraboloids As Concentrators; References; Chapter 5. Developments and Modifications of the Compound Parabolic Concentrator; 5.1 Introduction
- 5.2 The Dielectric-Filled CPC with Total Internal Reflection5.3 The CPC with Exit Angle Less Than π/2; 5.4 The Concentrator for A Source at A Finite Distance; 5.5 The Two-Stage CPC; 5.6 The CPC Designed for Skew Rays; 5.7 The Truncated CPC; 5.8 The Lens-Mirror CPC; 5.9 2D Collection in General; 5.10 Extension of the Edge-Ray Principle; 5.11 Some Examples; 5.12 The Differential Equation for the Concentrator Profile; 5.13 Mechanical Construction for 2D Concentrator Profiles; 5.14 A General Design Method for A 2D Concentrator with Lateral Reflectors
- 5.15 Application of the Method: Tailored Designs5.16 A Constructive Design Principle for Optimal Concentrators; References; Chapter 6. The Flow-line Method for Designing Nonimaging Optical Systems; 6.1 The Concept of the Flow Line; 6.2 Lines of Flow from Lambertian Radiators: 2D Examples; 6.3 3D Example; 6.4 A Simplified Method for Calculating Lines of Flow; 6.5 Properties of the Lines of Flow; 6.6 Application to Concentrator Design; 6.7 The Hyperboloid of Revolution As A Concentrator; 6.8 Elaborations of the Hyperboloid: the Truncated Hyperboloid; 6.9 The Hyperboloid Combined with A Lens
- 6.10 The Hyperboloid Combined With Two Lenses