Nonlinear fiber optics

Since the 3rd edition appeared, a fast evolution of the field has occurred. The fourth edition of this classic work provides an up-to-date account of the nonlinear phenomena occurring inside optical fibers. The contents include such important topics as self- and cross-phase modulation, stimulated Ra...

Descripción completa

Detalles Bibliográficos
Autor principal: Agrawal, G. P. 1951- (-)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Amsterdam ; Boston : Elsevier / Academic Press c2007.
Edición:4th ed
Colección:Quantum electronics--principles and applications.
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009627145806719
Tabla de Contenidos:
  • Front cover; Nonlinear Fiber Optics Fourth Edition; Copyright; Contents; Preface; Chapter 1 - Introduction; Historical Perspective; Fiber Characteristics; Material and Fabrication; Fiber Losses; Chromatic Dispersion; Polarization-Mode Dispersion; Fiber Nonlinearities; Nonlinear Refraction; Stimulated Inelastic Scattering; Importance of Nonlinear Effects; Overview; Problems; References; Chapter 2 - Pulse Propagation in Fibers; Maxwell's Equations; Fiber Modes; Eigenvalue Equation; Single-Mode Condition; Characteristics of the Fundamental Mode; Pulse-Propagation Equation
  • Nonlinear Pulse PropagationHigher-Order Nonlinear Effects; Numerical Methods; Split-Step Fourier Method; Finite-Difference Methods; Problems; References; Chapter 3 - Group-Velocity Dispersion; Different Propagation Regimes; Dispersion-Induced Pulse Broadening; Gaussian Pulses; Chirped Gaussian Pulses; Hyperbolic Secant Pulses; Super-Gaussian Pulses; Experimental Results; Third-Order Dispersion; Evolution of Chirped Gaussian Pulses; Broadening Factor; Arbitrary-Shape Pulses; Ultrashort-Pulse Measurements; Dispersion Management; GVD-Induced Limitations; Dispersion Compensation
  • Compensation of Third-Order DispersionProblems; References; Chapter 4 - Self-Phase Modulation; SPM-Induced Spectral Changes; Nonlinear Phase Shift; SPM-Induced Spectral Changes; Changes in Pulse Spectra; SPM-Induced Spectral Changes; Effect of Pulse Shape and Initial Chirp; SPM-Induced Spectral Changes; Effect of Partial Coherence; Effect of Group-Velocity Dispersion; Pulse Evolution; Effect of Group-Velocity Dispersion; Broadening Factor; Effect of Group-Velocity Dispersion; OpticalWave Breaking; Experimental Results; Effect of Third-Order Dispersion; SPM Effects in Fiber Amplifiers
  • Effect of Group-Velocity DispersionSemianalytic Techniques; Moment Method; Variational Method; Specific Analytic Solutions; Higher-Order Nonlinear Effects; Self-Steepening; Higher-Order Nonlinear Effects; Effect of GVD on Optical Shocks; Higher-Order Nonlinear Effects; Intrapulse Raman Scattering; Higher-Order Nonlinear Effects; Problems; References; Chapter 5 - Optical Solitons; Modulation Instability; Linear Stability Analysis; Gain Spectrum; Modulation Instability; Experimental Results; Modulation Instability; Ultrashort Pulse Generation; Modulation Instability; Impact on Lightwave Systems
  • Fiber SolitonsInverse Scattering Method; Fiber Solitons; Fundamental Soliton; Higher-Order Solitons; Experimental Confirmation; Soliton Stability; Other Types of Solitons; Dark Solitons; Dispersion-Managed Solitons; Bistable Solitons; Perturbation of Solitons; Perturbation Methods; Fiber Losses; Soliton Amplification; Soliton Interaction; Higher-Order Effects; Moment Equations for Pulse Parameters; Third-Order Dispersion; Self-Steepening; Intrapulse Raman Scattering; Propagation of Femtosecond Pulses; Problems; References; Chapter 6 - Polarization Effects; Nonlinear Birefringence
  • Origin of Nonlinear Birefringence