Tunable lasers handbook

Many laser applications depend on the ability of a particular laser to be frequency tunable. Among the many different types of frequency tunable lasers are: dye lasers, excimer lasers, and semiconductor lasers. Thisbook gives active researchers and engineers the practical information they need to ch...

Descripción completa

Detalles Bibliográficos
Otros Autores: Duarte, F. J. (Frank J.) (-)
Formato: Libro electrónico
Idioma:Inglés
Publicado: San Diego : Academic Press c1995.
Edición:1st edition
Colección:Optics and photonics.
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009627114206719
Tabla de Contenidos:
  • Front Cover; Tunable Lasers Handbook; Copyright Page; Contents; Contributors; Preface; Chapter 1. Introduction; 1. Introduction; 2. Tunable Laser Complementarity; 3. Goal of This Book; References; Chapter 2. Narrow-Linewidth Laser Oscillators and Intracavity Dispersion; 1. Introduction; 2. Dispersive Oscillator Configurations; 3. Physical Dimensions; 4. Generalized Interference Equation; 5. Dispersion Linewidth Equation; 6. Beam Divergence; 7. Intracavity Dispersion; 8. Intracavity Multiple-Prism Dispersion and Pulse Compression; 9. Transmission Efficiency of Multiple-Prism Arrays
  • 10. Wavelength TuningAppendix: Dispersion of Multiple-Prism Arrays and 4 x 4 Transfer Matrices; References; Chapter 3. Tunable Excimer Lasers; 1. Introduction; 2. Excimer Active Media; 3. Tuning of Discharge and Electron Beam Pumped Excimer Lasers; 4. Discharge Excimer Lasers; References; Chapter 4. CO2 Isotope Lasers and Their Applications in Tunable Laser Spectroscopy; 1. Introduction; 2. Vibrational Energy-Level Structive of the CO2 Molecule; 3. Rotational Energy-Level Substructure of the CO2 Molecule; 4. Processes Governing the Excitation of Regular Band Laser Transitions in CO2
  • 5. Additional Characteristics of Regular Band CO2 Lasers Transitions6. Lineshape Functions and Broadening Due to Gas Pressure and Doppler Shift in CO2 Gas; 7. Spectral Purity and Short-Term Stability; 8. Long-Term Line-Center Stabilization of CO2 Lasers; 9. Absolute Frequencies of Regular Band Lasing Transitions in Nine CO2 Isotopic Species; 10. Pressure Shifts in Line-Center-Stabilized CO2 Lasers; 11. Small-Signal Gain and Saturation Intensity of Regular Band Lasing Transitions in Sealed-off CO2 Isotope Lasers; 12. Laser Design
  • 13. Spanning the Frequency Range between Line-Center Stabilized CO2 Laser Transitions14. Spectroscopic Use of CO2 Lasers outside Their Fundamental 8.9- to 12.4-μM Wavelength Range; References; Chapter 5. Dye Lasers; 1. Introduction; 2. Laser-Pumped Pulsed Dye Lasers; 3. Flashlamp-Pumped Dye Lasers; 4. cw Laser-Pumped Dye Lasers; 5. Femtosecond-Pulsed Dye Lasers; 6. Solid-State Dye Lasers; Appendix of Laser Dyes; References; Chapter 6. Transition Metal Solid-State Lasers; 1. Introduction; 2. Transition Metal and Lanthanide Series Lasers; 3. Physics of Transition Metal Lasers; 4. Cr:Al2O3
  • 5. Cr:BeAl2O46. Ti:Al2O3; 7. Cr:LiCaAlF6 and Cr:LiSrAlF6; 8. Cr:GSGG, Cr:YSAG, and Cr:GSAG; 9. CO:MgF2, Ni:MgF2, and V:MgF2; 10. Wavelength Control Methods; References; Chapter 7. Optical Parametric Oscillators; 1. Introduction; 2. Parametric Interactions; 3. Parametric Oscillation; 4. Spectral Bandwidth and Acceptance Angles; 5. Birefringence Effects; 6. Average Power Limitations; 7. Nonlinear Crystals; 8. Phase-Matching Calculations; 9. Performance; 10. Tuning; References; Chapter 8. Tunable External-Cavity Semiconductor Lasers; 1. Introduction; 2. Semiconductor Optical Gain Media
  • 3. Classes of External-Cavity Lasers