Gauge theories in particle physics a practical introduction Volume 1, From relativistic quantum mechanics to QED Volume 1, From relativistic quantum mechanics to QED /
The fourth edition of this well-established, highly regarded two-volume set continues to provide a fundamental introduction to advanced particle physics while incorporating substantial new experimental results, especially in the areas of CP violation and neutrino oscillations. It offers an accessibl...
Otros Autores: | , |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Boca Raton, Florida ; London, England ; New York :
CRC Press
[2013]
|
Edición: | 4th ed |
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009624646506719 |
Tabla de Contenidos:
- Cover
- Volume 1
- Cover
- Half Title
- Title Page
- Copyright Page
- Dedication Page
- Contents
- Preface
- I Introductory Survey, Electromagnetism as a Gauge Theory, and Relativistic Quantum Mechanics
- 1 The Particles and Forces of the Standard Model
- 1.1 Introduction: the Standard Model
- 1.2 The fermions of the Standard Model
- 1.2.1 Leptons
- 1.2.2 Quarks
- 1.3 Particle interactions in the Standard Model
- 1.3.1 Classical and quantum fields
- 1.3.2 The Yukawa theory of force as virtual quantum exchange
- 1.3.3 The one-quantum exchange amplitude
- 1.3.4 Electromagnetic interactions
- 1.3.5 Weak interactions
- 1.3.6 Strong interactions
- 1.3.7 The gauge bosons of the Standard Model
- 1.4 Renormalization and the Higgs sector of the Standard Model
- 1.4.1 Renormalization
- 1.4.2 The Higgs boson of the Standard Model
- 1.5 Summary
- Problems
- 2 Electromagnetism as a Gauge Theory
- 2.1 Introduction
- 2.2 The Maxwell equations: current conservation
- 2.3 The Maxwell equations: Lorentz covariance and gauge invariance
- 2.4 Gauge invariance (and covariance) in quantum mechanics
- 2.5 The argument reversed: the gauge principle
- 2.6 Comments on the gauge principle in electromagnetism
- Problems
- 3 Relativistic Quantum Mechanics
- 3.1 The Klein-Gordon equation
- 3.1.1 Solutions in coordinate space
- 3.1.2 Probability current for the KG equation
- 3.2 The Dirac equation
- 3.2.1 Free-particle solutions
- 3.2.2 Probability current for the Dirac equation
- 3.3 Spin
- 3.4 The negative-energy solutions
- 3.4.1 Positive-energy spinors
- 3.4.2 Negative-energy spinors
- 3.4.3 Dirac's interpretation of the negative-energy solutions of the Dirac equation
- 3.4.4 Feynman's interpretation of the negative-energy solutions of the KG and Dirac equations.
- 3.5 Inclusion of electromagnetic interactions via the gauge principle: the Dirac prediction of g = 2 for the electron
- Problems
- 4 Lorentz Transformations and Discrete Symmetries
- 4.1 Lorentz transformations
- 4.1.1 The KG equation
- 4.1.2 The Dirac equation
- 4.2 Discrete transformations: P, C and T
- 4.2.1 Parity
- 4.2.2 Charge conjugation
- 4.2.3 CP
- 4.2.4 Time reversal
- 4.2.5 CPT
- Problems
- II Introduction to Quantum Field Theory
- 5 Quantum Field Theory I: The Free Scalar Field
- 5.1 The quantum field: (i) descriptive
- 5.2 The quantum field: (ii) Lagrange-Hamilton formulation
- 5.2.1 The action principle: Lagrangian particle mechanics
- 5.2.2 Quantum particle mechanics à la Heisenberg-Lagrange-Hamilton
- 5.2.3 Interlude: the quantum oscillator
- 5.2.4 Lagrange-Hamilton classical field mechanics
- 5.2.5 Heisenberg-Lagrange-Hamilton quantum field mechanics
- 5.3 Generalizations: four dimensions, relativity and mass
- Problems
- 6 Quantum Field Theory II: Interacting Scalar Fields
- 6.1 Interactions in quantum field theory: qualitative introduction
- 6.2 Perturbation theory for interacting fields: the Dyson expansion of the S-matrix
- 6.2.1 The interaction picture
- 6.2.2 The S-matrix and the Dyson expansion
- 6.3 Applications to the 'ABC' theory
- 6.3.1 The decay C A + B
- 6.3.2 A + B A + B scattering: the amplitudes
- 6.3.3 A + B A + B scattering: the Yukawa exchange mechanism, s and u channel processes
- 6.3.4 A + B A + B scattering: the differential cross section
- 6.3.5 A + B A + B scattering: loose ends
- Problems
- 7 Quantum Field Theory III: Complex Scalar Fields, Dirac and Maxwell Fields
- Introduction of Electromagnetic Interactions
- 7.1 The complex scalar field: global U(1) phase invariance, particles and antiparticles
- 7.2 The Dirac field and the spin-statistics connection.
- 7.3 The Maxwell field Aμ(x)
- 7.3.1 The classical field case
- 7.3.2 Quantizing Aμ(x)
- 7.4 Introduction of electromagnetic interactions
- 7.5 P, C and T in quantum field theory
- 7.5.1 Parity
- 7.5.2 Charge conjugation
- 7.5.3 Time reversal
- Problems
- III Tree-Level Applications in QED
- 8 Elementary Processes in Scalar and Spinor Electrodynamics
- 8.1 Coulomb scattering of charged spin-0 particles
- 8.1.1 Coulomb scattering of s+ (wavefunction approach)
- 8.1.2 Coulomb scattering of s+ (field-theoretic approach)
- 8.1.3 Coulomb scattering of s−
- 8.2 Coulomb scattering of charged spin-½ particles
- 8.2.1 Coulomb scattering of e− (wavefunction approach)
- 8.2.2 Coulomb scattering of e−(field-theoretic approach)
- 8.2.3 Trace techniques for spin summations
- 8.2.4 Coulomb scattering of e+
- 8.3 e−s+ scattering
- 8.3.1 The amplitude for e−s+ e−s+
- 8.3.2 The cross section for e−s+ e−s+
- 8.4 Scattering from a non-point-like object: the pion form factor in e−π+ e−π+
- 8.4.1 e− scattering from a charge distribution
- 8.4.2 Lorentz invariance
- 8.4.3 Current conservation
- 8.5 The form factor in the time-like region: e+e− π+π− and crossing symmetry
- 8.6 Electron Compton scattering
- 8.6.1 The lowest-order amplitudes
- 8.6.2 Gauge invariance
- 8.6.3 The Compton cross section
- 8.7 Electronmuon elastic scattering
- 8.8 Electron-proton elastic scattering and nucleon form factors
- 8.8.1 Lorentz invariance
- 8.8.2 Current conservation
- Problems
- 9 Deep Inelastic Electron-Nucleon Scattering and the Parton Model
- 9.1 Inelastic electron-proton scattering: kinematics and structure functions
- 9.2 Bjorken scaling and the parton model
- 9.3 Partons as quarks and gluons
- 9.4 The Drell-Yan process
- 9.5 e+e− annihilation into hadrons
- Problems
- IV Loops and Renormalization.
- 10 Loops and Renormalization I: The ABC Theory
- 10.1 The propagator correction in ABC theory
- 10.1.1 The O(g2) self-energy ∏[2]C (q2)
- 10.1.2 Mass shift
- 10.1.3 Field strength renormalization
- 10.2 The vertex correction
- 10.3 Dealing with the bad news: a simple example
- 10.3.1 Evaluating ∏[2]C (q2)
- 10.3.2 Regularization and renormalization
- 10.4 Bare and renormalized perturbation theory
- 10.4.1 Reorganizing perturbation theory
- 10.4.2 The O(g2ph) renormalized self-energy revisited: how counter terms are determined by renormalization conditions
- 10.5 Renormalizability
- Problems
- 11 Loops and Renormalization II: QED
- 11.1 Counter terms
- 11.2 The O(e2) fermion self-energy
- 11.3 The O(e2) photon self-energy
- 11.4 The O(e2) renormalized photon self-energy
- 11.5 The physics of ∏̅γ[2] (q2)
- 11.5.1 Modified Coulomb's law
- 11.5.2 Radiatively induced charge form factor
- 11.5.3 The running coupling constant
- 11.5.4 ∏̅γ[2] in the s-channel
- 11.6 The O(e2) vertex correction, and Z1 = Z2
- 11.7 The anomalous magnetic moment and tests of QED
- 11.8 Which theories are renormalizable - and does it matter?
- Problems
- A Non-relativistic Quantum Mechanics
- B Natural Units
- C Maxwell's Equations: Choice of Units
- D Special Relativity: Invariance and Covariance
- E Dirac δ-Function
- F Contour Integration
- G Green Functions
- H Elements of Non-relativistic Scattering Theory
- H.1 Time-independent formulation and differential cross section
- H.2 Expression for the scattering amplitude: Born approximation
- H.3 Time-dependent approach
- I The Schrödinger and Heisenberg Pictures
- J Dirac Algebra and Trace Identities
- J.1 Dirac algebra
- J.1.1 γ matrices
- J.1.2 γ5 identities
- J.1.3 Hermitian conjugate of spinor matrix elements
- J.1.4 Spin sums and projection operators
- J.2 Trace theorems.
- K Example of a Cross Section Calculation
- K.1 The spin-averaged squared matrix element
- K.2 Evaluation of two-body Lorentz-invariant phase space in 'laboratory' variables
- L Feynman Rules for Tree Graphs in QED
- L.1 External particles
- L.2 Propagators
- L.3 Vertices
- References
- Index
- Volume 2
- Cover
- Half Title
- Title Page
- Copyright Page
- Dedication Page
- Contents
- Preface
- V Non-Abelian Symmetries
- 12 Global Non-Abelian Symmetries
- 12.1 The Standard Model
- 12.2 The flavour symmetry SU(2)f
- 12.2.1 The nucleon isospin doublet and the group SU(2)
- 12.2.2 Larger (higher-dimensional) multiplets of SU(2) in nuclear physics
- 12.2.3 Isospin in particle physics: flavour SU(2)f
- 12.3 Flavour SU(3)f
- 12.4 Non-Abelian global symmetries in Lagrangian quantum field theory
- 12.4.1 SU(2)f and SU(3)f
- 12.4.2 Chiral symmetry
- Problems
- 13 Local Non-Abelian (Gauge) Symmetries
- 13.1 Local SU(2) symmetry
- 13.1.1 The covariant derivative and interactions with matter
- 13.1.2 The non-Abelian field strength tensor
- 13.2 Local SU(3) Symmetry
- 13.3 Local non-Abelian symmetries in Lagrangian quantum field theory
- 13.3.1 Local SU(2) and SU(3) Lagrangians
- 13.3.2 Gauge field self-interactions
- 13.3.3 Quantizing non-Abelian gauge fields
- Problems
- VI QCD and the Renormalization Group
- 14 QCD I: Introduction, Tree Graph Predictions, and Jets
- 14.1 The colour degree of freedom
- 14.2 The dynamics of colour
- 14.2.1 Colour as an SU(3) group
- 14.2.2 Global SU(3)c invariance, and 'scalar gluons'
- 14.2.3 Local SU(3)c invariance: the QCD Lagrangian
- 14.2.4 The θ-term
- 14.3 Hard scattering processes, QCD tree graphs, and jets
- 14.3.1 Introduction
- 14.3.2 Two-jet events in p̅p collisions
- 14.3.3 Three-jet events in p̅p collisions
- 14.4 3-jet events in e+e− annihilation.
- 14.4.1 Calculation of the parton-level cross section.