Gauge theories in particle physics a practical introduction Volume 1, From relativistic quantum mechanics to QED Volume 1, From relativistic quantum mechanics to QED /

The fourth edition of this well-established, highly regarded two-volume set continues to provide a fundamental introduction to advanced particle physics while incorporating substantial new experimental results, especially in the areas of CP violation and neutrino oscillations. It offers an accessibl...

Descripción completa

Detalles Bibliográficos
Otros Autores: Aitchison, Ian J. R., author (author), Hey, Anthony J. G., author
Formato: Libro electrónico
Idioma:Inglés
Publicado: Boca Raton, Florida ; London, England ; New York : CRC Press [2013]
Edición:4th ed
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009624646506719
Tabla de Contenidos:
  • Cover
  • Volume 1
  • Cover
  • Half Title
  • Title Page
  • Copyright Page
  • Dedication Page
  • Contents
  • Preface
  • I Introductory Survey, Electromagnetism as a Gauge Theory, and Relativistic Quantum Mechanics
  • 1 The Particles and Forces of the Standard Model
  • 1.1 Introduction: the Standard Model
  • 1.2 The fermions of the Standard Model
  • 1.2.1 Leptons
  • 1.2.2 Quarks
  • 1.3 Particle interactions in the Standard Model
  • 1.3.1 Classical and quantum fields
  • 1.3.2 The Yukawa theory of force as virtual quantum exchange
  • 1.3.3 The one-quantum exchange amplitude
  • 1.3.4 Electromagnetic interactions
  • 1.3.5 Weak interactions
  • 1.3.6 Strong interactions
  • 1.3.7 The gauge bosons of the Standard Model
  • 1.4 Renormalization and the Higgs sector of the Standard Model
  • 1.4.1 Renormalization
  • 1.4.2 The Higgs boson of the Standard Model
  • 1.5 Summary
  • Problems
  • 2 Electromagnetism as a Gauge Theory
  • 2.1 Introduction
  • 2.2 The Maxwell equations: current conservation
  • 2.3 The Maxwell equations: Lorentz covariance and gauge invariance
  • 2.4 Gauge invariance (and covariance) in quantum mechanics
  • 2.5 The argument reversed: the gauge principle
  • 2.6 Comments on the gauge principle in electromagnetism
  • Problems
  • 3 Relativistic Quantum Mechanics
  • 3.1 The Klein-Gordon equation
  • 3.1.1 Solutions in coordinate space
  • 3.1.2 Probability current for the KG equation
  • 3.2 The Dirac equation
  • 3.2.1 Free-particle solutions
  • 3.2.2 Probability current for the Dirac equation
  • 3.3 Spin
  • 3.4 The negative-energy solutions
  • 3.4.1 Positive-energy spinors
  • 3.4.2 Negative-energy spinors
  • 3.4.3 Dirac's interpretation of the negative-energy solutions of the Dirac equation
  • 3.4.4 Feynman's interpretation of the negative-energy solutions of the KG and Dirac equations.
  • 3.5 Inclusion of electromagnetic interactions via the gauge principle: the Dirac prediction of g = 2 for the electron
  • Problems
  • 4 Lorentz Transformations and Discrete Symmetries
  • 4.1 Lorentz transformations
  • 4.1.1 The KG equation
  • 4.1.2 The Dirac equation
  • 4.2 Discrete transformations: P, C and T
  • 4.2.1 Parity
  • 4.2.2 Charge conjugation
  • 4.2.3 CP
  • 4.2.4 Time reversal
  • 4.2.5 CPT
  • Problems
  • II Introduction to Quantum Field Theory
  • 5 Quantum Field Theory I: The Free Scalar Field
  • 5.1 The quantum field: (i) descriptive
  • 5.2 The quantum field: (ii) Lagrange-Hamilton formulation
  • 5.2.1 The action principle: Lagrangian particle mechanics
  • 5.2.2 Quantum particle mechanics à la Heisenberg-Lagrange-Hamilton
  • 5.2.3 Interlude: the quantum oscillator
  • 5.2.4 Lagrange-Hamilton classical field mechanics
  • 5.2.5 Heisenberg-Lagrange-Hamilton quantum field mechanics
  • 5.3 Generalizations: four dimensions, relativity and mass
  • Problems
  • 6 Quantum Field Theory II: Interacting Scalar Fields
  • 6.1 Interactions in quantum field theory: qualitative introduction
  • 6.2 Perturbation theory for interacting fields: the Dyson expansion of the S-matrix
  • 6.2.1 The interaction picture
  • 6.2.2 The S-matrix and the Dyson expansion
  • 6.3 Applications to the 'ABC' theory
  • 6.3.1 The decay C A + B
  • 6.3.2 A + B A + B scattering: the amplitudes
  • 6.3.3 A + B A + B scattering: the Yukawa exchange mechanism, s and u channel processes
  • 6.3.4 A + B A + B scattering: the differential cross section
  • 6.3.5 A + B A + B scattering: loose ends
  • Problems
  • 7 Quantum Field Theory III: Complex Scalar Fields, Dirac and Maxwell Fields
  • Introduction of Electromagnetic Interactions
  • 7.1 The complex scalar field: global U(1) phase invariance, particles and antiparticles
  • 7.2 The Dirac field and the spin-statistics connection.
  • 7.3 The Maxwell field Aμ(x)
  • 7.3.1 The classical field case
  • 7.3.2 Quantizing Aμ(x)
  • 7.4 Introduction of electromagnetic interactions
  • 7.5 P, C and T in quantum field theory
  • 7.5.1 Parity
  • 7.5.2 Charge conjugation
  • 7.5.3 Time reversal
  • Problems
  • III Tree-Level Applications in QED
  • 8 Elementary Processes in Scalar and Spinor Electrodynamics
  • 8.1 Coulomb scattering of charged spin-0 particles
  • 8.1.1 Coulomb scattering of s+ (wavefunction approach)
  • 8.1.2 Coulomb scattering of s+ (field-theoretic approach)
  • 8.1.3 Coulomb scattering of s−
  • 8.2 Coulomb scattering of charged spin-½ particles
  • 8.2.1 Coulomb scattering of e− (wavefunction approach)
  • 8.2.2 Coulomb scattering of e−(field-theoretic approach)
  • 8.2.3 Trace techniques for spin summations
  • 8.2.4 Coulomb scattering of e+
  • 8.3 e−s+ scattering
  • 8.3.1 The amplitude for e−s+ e−s+
  • 8.3.2 The cross section for e−s+ e−s+
  • 8.4 Scattering from a non-point-like object: the pion form factor in e−π+ e−π+
  • 8.4.1 e− scattering from a charge distribution
  • 8.4.2 Lorentz invariance
  • 8.4.3 Current conservation
  • 8.5 The form factor in the time-like region: e+e− π+π− and crossing symmetry
  • 8.6 Electron Compton scattering
  • 8.6.1 The lowest-order amplitudes
  • 8.6.2 Gauge invariance
  • 8.6.3 The Compton cross section
  • 8.7 Electronmuon elastic scattering
  • 8.8 Electron-proton elastic scattering and nucleon form factors
  • 8.8.1 Lorentz invariance
  • 8.8.2 Current conservation
  • Problems
  • 9 Deep Inelastic Electron-Nucleon Scattering and the Parton Model
  • 9.1 Inelastic electron-proton scattering: kinematics and structure functions
  • 9.2 Bjorken scaling and the parton model
  • 9.3 Partons as quarks and gluons
  • 9.4 The Drell-Yan process
  • 9.5 e+e− annihilation into hadrons
  • Problems
  • IV Loops and Renormalization.
  • 10 Loops and Renormalization I: The ABC Theory
  • 10.1 The propagator correction in ABC theory
  • 10.1.1 The O(g2) self-energy ∏[2]C (q2)
  • 10.1.2 Mass shift
  • 10.1.3 Field strength renormalization
  • 10.2 The vertex correction
  • 10.3 Dealing with the bad news: a simple example
  • 10.3.1 Evaluating ∏[2]C (q2)
  • 10.3.2 Regularization and renormalization
  • 10.4 Bare and renormalized perturbation theory
  • 10.4.1 Reorganizing perturbation theory
  • 10.4.2 The O(g2ph) renormalized self-energy revisited: how counter terms are determined by renormalization conditions
  • 10.5 Renormalizability
  • Problems
  • 11 Loops and Renormalization II: QED
  • 11.1 Counter terms
  • 11.2 The O(e2) fermion self-energy
  • 11.3 The O(e2) photon self-energy
  • 11.4 The O(e2) renormalized photon self-energy
  • 11.5 The physics of ∏̅γ[2] (q2)
  • 11.5.1 Modified Coulomb's law
  • 11.5.2 Radiatively induced charge form factor
  • 11.5.3 The running coupling constant
  • 11.5.4 ∏̅γ[2] in the s-channel
  • 11.6 The O(e2) vertex correction, and Z1 = Z2
  • 11.7 The anomalous magnetic moment and tests of QED
  • 11.8 Which theories are renormalizable - and does it matter?
  • Problems
  • A Non-relativistic Quantum Mechanics
  • B Natural Units
  • C Maxwell's Equations: Choice of Units
  • D Special Relativity: Invariance and Covariance
  • E Dirac δ-Function
  • F Contour Integration
  • G Green Functions
  • H Elements of Non-relativistic Scattering Theory
  • H.1 Time-independent formulation and differential cross section
  • H.2 Expression for the scattering amplitude: Born approximation
  • H.3 Time-dependent approach
  • I The Schrödinger and Heisenberg Pictures
  • J Dirac Algebra and Trace Identities
  • J.1 Dirac algebra
  • J.1.1 γ matrices
  • J.1.2 γ5 identities
  • J.1.3 Hermitian conjugate of spinor matrix elements
  • J.1.4 Spin sums and projection operators
  • J.2 Trace theorems.
  • K Example of a Cross Section Calculation
  • K.1 The spin-averaged squared matrix element
  • K.2 Evaluation of two-body Lorentz-invariant phase space in 'laboratory' variables
  • L Feynman Rules for Tree Graphs in QED
  • L.1 External particles
  • L.2 Propagators
  • L.3 Vertices
  • References
  • Index
  • Volume 2
  • Cover
  • Half Title
  • Title Page
  • Copyright Page
  • Dedication Page
  • Contents
  • Preface
  • V Non-Abelian Symmetries
  • 12 Global Non-Abelian Symmetries
  • 12.1 The Standard Model
  • 12.2 The flavour symmetry SU(2)f
  • 12.2.1 The nucleon isospin doublet and the group SU(2)
  • 12.2.2 Larger (higher-dimensional) multiplets of SU(2) in nuclear physics
  • 12.2.3 Isospin in particle physics: flavour SU(2)f
  • 12.3 Flavour SU(3)f
  • 12.4 Non-Abelian global symmetries in Lagrangian quantum field theory
  • 12.4.1 SU(2)f and SU(3)f
  • 12.4.2 Chiral symmetry
  • Problems
  • 13 Local Non-Abelian (Gauge) Symmetries
  • 13.1 Local SU(2) symmetry
  • 13.1.1 The covariant derivative and interactions with matter
  • 13.1.2 The non-Abelian field strength tensor
  • 13.2 Local SU(3) Symmetry
  • 13.3 Local non-Abelian symmetries in Lagrangian quantum field theory
  • 13.3.1 Local SU(2) and SU(3) Lagrangians
  • 13.3.2 Gauge field self-interactions
  • 13.3.3 Quantizing non-Abelian gauge fields
  • Problems
  • VI QCD and the Renormalization Group
  • 14 QCD I: Introduction, Tree Graph Predictions, and Jets
  • 14.1 The colour degree of freedom
  • 14.2 The dynamics of colour
  • 14.2.1 Colour as an SU(3) group
  • 14.2.2 Global SU(3)c invariance, and 'scalar gluons'
  • 14.2.3 Local SU(3)c invariance: the QCD Lagrangian
  • 14.2.4 The θ-term
  • 14.3 Hard scattering processes, QCD tree graphs, and jets
  • 14.3.1 Introduction
  • 14.3.2 Two-jet events in p̅p collisions
  • 14.3.3 Three-jet events in p̅p collisions
  • 14.4 3-jet events in e+e− annihilation.
  • 14.4.1 Calculation of the parton-level cross section.