An introduction to the Heisenberg Group and the sub-Riemannian isoperimetric problem
The past decade has witnessed a dramatic and widespread expansion of interest and activity in sub-Riemannian (Carnot-Caratheodory) geometry, motivated both internally by its role as a basic model in the modern theory of analysis on metric spaces, and externally through the continuous development of...
Otros Autores: | |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Basel ; Boston :
Birkhauser
c2007.
|
Edición: | 1st ed. 2007. |
Colección: | Progress in Mathematics,
259 |
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009461834806719 |
Tabla de Contenidos:
- The Isoperimetric Problem in Euclidean Space
- The Heisenberg Group and Sub-Riemannian Geometry
- Applications of Heisenberg Geometry
- Horizontal Geometry of Submanifolds
- Sobolev and BV Spaces
- Geometric Measure Theory and Geometric Function Theory
- The Isoperimetric Inequality in ?
- The Isoperimetric Profile of ?
- Best Constants for Other Geometric Inequalities on the Heisenberg Group.