Model Order Reduction Volume 2, Snapshot-Based Methods and Algorithms Volume 2, Snapshot-Based Methods and Algorithms /
An increasing complexity of models used to predict real-world systems leads to the need for algorithms to replace complex models with far simpler ones, while preserving the accuracy of the predictions. This two-volume handbook covers methods as well as applications. This second volume focuses on app...
Otros Autores: | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Berlin/Boston
De Gruyter
2020
Berlin ; Boston : [2020] |
Colección: | Model Order Reduction ;
Volume 2 |
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009429259006719 |
Tabla de Contenidos:
- Frontmatter
- Preface to the second volume of Model Order Reduction
- Contents
- 1 Basic ideas and tools for projection-based model reduction of parametric partial differential equations
- 2 Model order reduction by proper orthogonal decomposition
- 3 Proper generalized decomposition
- 4 Reduced basis methods
- 5 Computational bottlenecks for PROMs: precomputation and hyperreduction
- 6 Localized model reduction for parameterized problems
- 7 Data-driven methods for reduced-order modeling
- Index