Age-period-cohort analysis new models, methods, and empirical applications
Age-Period-Cohort Analysis: New Models, Methods, and Empirical Applications is based on a decade of the authors' collaborative work in age-period-cohort (APC) analysis. Within a single, consistent HAPC-GLMM statistical modeling framework, the authors synthesize APC models and methods for three...
Otros Autores: | , |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Boca Raton, FL :
CRC Press LLC
2016.
[2013] |
Edición: | 1st edition |
Colección: | Interdisciplinary statistics.
|
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009428401806719 |
Tabla de Contenidos:
- 1. Introduction
- 2. Why cohort analysis?
- 3. APC analysis of data from three common research designs
- 4. Formalities of the age-period-cohort analysis conundrum and a generalized linear mixed models (GLMM) framework
- 5. APC accounting/multiple classification model, part I : model identification and estimation using the intrinsic estimator
- 6. APC accounting/multiple classification model, part II : empirical applications
- 7. Mixed effects models : hierarchical APC-cross-classified random effects models (HAPC-CCREM), part I : the basics
- 8. Mixed effects models : hierarchical APC-cross-classified random effects models (HAPC-CCREM), part II : advanced analyses
- 9. Mixed effects models : hierarchical APC-growth curve analysis of prospective cohort data
- 10. Directions for future research and conclusion.