Motor cortex microcircuits (Frontiers in brain microcircuits series)

How does the motor cortex enable mammals to generate accurate, complex, and purposeful movements? A cubic milimeter of motor cortex contains roughly ̃10̂5 cells, an amazing ̃4 Km of axons and ̃0.4 Km of dendrites, somehow wired together with ̃10̂9 synapses. Corticospinal neurons (a.k.a. Betz cells,...

Descripción completa

Detalles Bibliográficos
Otros Autores: Takehsi Kaneko (auth), Kaneko, Takehsi editor (editor), Shepherd, Gordon M editor, Hatsopoulos, Nicholas G. editor
Formato: Libro electrónico
Idioma:Inglés
Publicado: France : Frontiers Media SA 2015
2014
Colección:Frontiers Research Topics.
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009428059906719
Descripción
Sumario:How does the motor cortex enable mammals to generate accurate, complex, and purposeful movements? A cubic milimeter of motor cortex contains roughly ̃10̂5 cells, an amazing ̃4 Km of axons and ̃0.4 Km of dendrites, somehow wired together with ̃10̂9 synapses. Corticospinal neurons (a.k.a. Betz cells, upper motor neurons) are a key cell type, monosynaptically conveying the output of the cortical circuit to the spinal cord circuits and lower motor neurons. But corticospinal neurons are greatly outnumbered by all the other kinds of neurons in motor cortex, which presumably also contribute crucially to the computational operations carried out for planning, executing, and guiding actions. Determining the wiring patterns, the dynamics of signalling, and how these relate to movement at the level of specific excitatory and inhibitory cell types is critically important for a mechanistic understanding of the input-output organization of motor cortex. While there is a predictive microcircuit hypothesis that relates motor learning to the operation of the cerebellar cortex, we lack such a microcircuit understanding in motor cortex and we consider microcircuits as a central research topic in the field. This Research Topic covers any issues relating to the microcircuit-level analysis of motor cortex. Contributions are welcomed from neuroscientists at all levels of investigation, from in vivo physiology and imaging in humans and monkeys, to rodent models, in vitro anatomy, electrophysiology, electroanatomy, cellular imaging, molecular biology, disease models, computational modelling, and more.
Notas:Bibliographic Level Mode of Issuance: Monograph
Descripción Física:1 online resource (133 pages) : illustrations; digital, PDF file(s)
Bibliografía:Includes bibliographical references.
ISBN:9782889193899